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arXiv:1306.xxxx, Landauer’s Principle
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Formulmon & Proof anc size cffccts Sharpness of BAQ > AS

Landauer’s Principle —a common formulation

Suppose a computer “erases” 1 bit of information.

Then: The amount of “heat” “dissipated” into the environment
is at least kpTlog2:

AQ > kgTlog?2,

where T = temperature of the environment of the computer.

BAQ > AS “Landauer bound”
kB =

where 1, = 1/T

Why “erasure”? E.g. to re-initialize error correcting mechanism. TUTI
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Existing derivations of LP

@ based on 2" Law of Thermodyn: e.g. Landauer '61, ...
— mix-up of notions (cf. Earman/Norton, Bennett, .. .)

@ in specific models: e.g. 1-particle gas in box
— need to accept thermodyn formalism (e.g. “quasistatic”)

@ recently: (more) microscopic
e Shizume (1995): effective dissipative force (Fokker-Planck)
e Piechocinska (2000): Jarzynski equality
—assumes: final product state ps ® pr A Ps ® P
—assumes: p, pure
— assumes: pj diagonal in energy eigenbasis — quantum?
e Sagawa/Ueda (2009): need system Hamiltonian Hg, ...

@ claimed “violations” of LP:
— Nieuwenhuizen '01, Lutz 11, Orlov '12, ...

our work: rigorous and minimal formulation & proof of LP TEGHNISCHE
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ﬂ Formulation & Proof
@ minimal setup
@ LP equality: SAQ = AS+I(S': R) + D(phllpr)

@ Finite-size effects
@ entropy inequalities

o finite-size effects: BAQ > AS+ B3

log?d ’

e Sharpness of SAQ > AS

> AS
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Minimal assumptions for LP
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Minimal assumptions for LP
(1) system S, reservoir R: Hgg = Hs @ Hg
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Formulation & Proof
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Minimal assumptions for LP

(1) system S, reservoir R: Hsg = Hs ® Hp
(2) initial state uncorrelated: psg = ps ® pg

“Counterexample”: perfect classical correlations
Suppose: psg = 3 pili)s(il @ [i)r(i] -

Let: U: |i)s|li)g — |0)s|i)g -
Then: UpseU' = [0)s5(0] ® 32, pili)lil
— Pr = PR

— no heat change

— LP “violated”
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Minimal assumptions for LP

(1) system S, reservoir R: Hgsgp = Hs ® Hp
(2) initial state uncorrelated: psg = ps ® pg
(3) pr= % (R-Hamiltonian H, R-temperature T = 1/0)

@ parameter T or § occurring in LP
o “stable” states at ambient temperature T

o “freely available”

3AQ > AS
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Minimal assumptions for LP

system S, reservoir R: Hsg = Hs @ Hr

initial state uncorrelated: psgr = ps ® pr
e —BH

= G| (R-Hamiltonian H, R-temperature T = 1/0)

unltary evolution: pl, = UpsgUT

1
2

3

(
(
(
(4

~ ~— ~— ~—

@ microscopic laws of nature

@ avoid obscuring entropy sinks
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Formulation & Proof Finite-size effects Sharpness of BAQ > AS
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Minimal assumptions for LP

(1) system S, reservoir R: Hgsgp = Hs ® Hp
(2) initial state uncorrelated: psg = ps ® pr
(3)
(4)

3) pr = % (R-Hamiltonian H, R-temperature T = 1/)
4

unitary evolution: pf, = UpsgUT

no Hamiltonian for S

no temperature for §

psg May be correlated

ps need not be pure

entropy of S may decrease or increase
quantum ( [H, p%] # 0) and classical
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Minimal setup for LP

initial state final state /
————c-= Ps

Ps | dl

u ! - |

® —>»'  Psgp |

] 1
pR ~ e_ﬂH : ~N : '
—_— YT - PR

[von Neumann entropy: S(p) := —Tr[plogp] = —> . pilogp;
— averaged quantities; also: AQ = averaged heat flow] 'I'I.I'I'I
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Formulation & Proof
0000

Proof of LP
@ “Second Law Lemma™ A = AS + [(S':R') > AS

A—AS = S(pk) — S(pr

— I(A : B) > 0 mutual information

— no thermal state assumption



Formulation & Proof
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Proof of LP

@ “Second Law Lemma™ A = AS + I(S':R') > AS
@ R-entropy vs. heat: SAQ = A + D(pklpr)

A = S(pg) — S(pr)
e*BH
= [ prlog pp + pzelog Trle mq}

e
= tr [5H(P§e - PR)} +tr [Pﬁe log Tr[e BH] Pr10g pi

= BAQ — D(pkllipr) -

recall: D(c||p) := Tr[ologo| — Tr[ologp] > 0

(“relative entropy”)
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Main result I: Equality form of LP

Theorem: Equality form of Landauer’s Principle

Let psr = ps ® pr be a product state,

where pg = ¢ PH /Tr [e=FH] is thermal state of Hamiltonian H#
at inverse temperature .

Assume pi = UpsgU' with a unitary evolution U.

Then:
BAQ

AS + I(S": R') + D(pgllor)
AS.

Vv
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Equality cases in Landauer’s bound: SAQ = AS
Equality form of LP:  BAQ = AS + I(S' : R') + D(pg||pr)

@ D(pillpr) =0 = pk = pr
@ I(S':R)=0 = pyp = py@pr = Ulps® pg) U

Thus: BAQ=AS & pi=VpsVl and pk = pr
& AS = A0 =0
< basically nothing happens

> AS

Next: explicit improvements of Landauer’s bound:
— need: finite size d = dim(R) < oo
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Finite-size effects
Reservoir: dim(Hg) = d < oo:
@ e.g. when error-correcting mechanism small

@ e.g. when short interaction time S — R: effectively small d
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Finite-size effects
Reservoir: dim(Hg) = d < oo:
@ e.g. when error-correcting mechanism small

@ e.g. when short interaction time S — R: effectively small d

Idea: BAQ > AS + D(pillpr)

AS>0: = 0 < A = S(pg) — S(pr)
= pr # PR
= D(pillor) > 0.
— new entropy inequality: D(pkl||pr) > M(A,d)

: (8AQ)° (8AQ)
AS <0 D(pgllor) 2 maqcm 2 v m
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Finite-size effects
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Relative entropy vs. entropy difference

Theorem
Let o, p on C¢. Define A := S(c) — S(p). Then:

A A3
> > — 4+ — >
Dolle) = M(Ad) 2 o+ >

0,

where
M(A,d) := min {Dz(er)

Ha(s) — Ha(r) + (s — r) log(d — 1) = A}

1
and szlogz(d—1)+1 or N=log’d.

@ M(A,d): tight, effectively computable, strictly convex
® N(d) := maxge,<1/2 (1 — r) (log =2 (d — 1))°: cubic Taylor
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Relative entropy vs. entropy difference

M(a,d=10) D(p;?”pR> > M(Avd)
0 A? A3
i = 2N(d) + 6N(d)?
A2
Z T2
slog“(d —1)+2
> 0.
(better than Pinsker +
graph for Fannes—Audenaert)
d = 10 = dim(R)
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Finite-size effects
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Relative entropy vs. entropy difference

Proof
Let A = S(o) — S(p) be given:

D(c|lp) = Tr[(—logp)o] — S(o) for fixed p, fixed S(o)

= same exponential family: o = p7/Tr [p”]
@ Lagrange multipliers = p, o have at most 2 distinct EVs+# 0
© discrete optimization = 1 large EV, (d — 1) small EVs

A A
= diag (1—s, ..., _
7 e < YA d - 1) classical states
r r ) (commuting)

= di l—r,—. ., —
p 1ag< r7d_]7 ’d—l

= M(A,d) = ogisl?rfgl {Dz(s||r) ! H>(s) — Hy(r) + (s — r) log(d A}TLITI
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Improved Landauer bound for AS > 0

BAQ > AS + D(pgllpr) > AS + M(AS,d)
(As)?
Tlog?(d—1) + 2

> AS +

Example: Erasure of 1 bit of information

@ 2-qubit reservoir: > 34% more heat dissipation
@ 5-qubit reservoir: > 12% more heat dissipation

@ bound tight
@ denominator ~ log>d ~ (#particles)?
@ logd = effective reservoir D.O.F’s in short interaction
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Finite-size effects for SAQ <0

D(pillor) = D(pramllor) = BAQ — [S(pr.m) — S(pr))

= ... >
Er+AQ (E ﬁZ ,
- /ER /ER CH(E/) dE dE
N (300)?
= 2N(d)

[next slide: Cy(E') < N(d) < 1log’(d—1)+1]

(
= FAQ = AS+ o

= BAQ > AS+ [N(d) — AS+/N(d)? — 2N(d)AS
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Finite-size effects
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Maximum heat capacity in d < oo dimensions
e H/T

d
Cu(p) = d—Ttr [Htr[e—H/T] = vary,(BH) = var,,(logpg)

_1
T=3

= Tr [,05 (log ps + S(Pﬁ)ﬂ)z]

Theorem: For any state p on C¢:

1—r 2
< o= — _
var,(logp) < N(d) Ogrrrlg)](/2 r(l—r) <1og . (d 1))

1
< Zlogz(d — 1)+ 1 < n*  “superextensive”

r r
ined for: = di 1-—
attained fo p 1ag< St ’d—l)

H = diag(—1,0,...,0)
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Sharpness of BAQ > AS
000

Main result II: Finite-size improvements of LP

® Taair

4

3

d =16 = dim(R) (4-qubit reservoir)

@ Landauer’s bound:
BAQ > AS

@ tight bound for AS > 0:
BAQ > AS+ M(AS,d)

@ for AS < 0 (not tight):
BAQ > AS+

[Na— A5 — /N3 —2N,5]

@ quadratic bound AS > 0:

2(AS)?
PAQ = AS+ i
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Finite-size effects
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Extension: Processes with memory
Let: pPsmM X PR > pngR = Ulpsmu ® pR)U]L

Example: perfect classical correlations
pSMzzp, el B (0)s0l@ Y pilidui

whereas pR =pr,i.e. A=AQ=0.

Result: If p}, = pm [or S(p},) < S(pm)], then:

Q@ “2nd Law”: A > AS.u = S(S|M) — S(S'|M")

Q LP: BAQ > AScona + I(SM' : R") + D(pkllpr) > AScond
— proofs similar as before

© finite-size corrections with AS,,,; rather than AS
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Achievability of Landauer’s bound

@ How sharp can SAQ > AS be?

@ Given ps and p:
Construct process with BAQ — AS = S(ps) — S(p5) !
= needd — oo

Explicit process next:

o iterated SWAP processes (for given ps, p%)

m
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lterated SWAP process

S

SR /E

Rk R3 RZ ﬁ
= =

He, T, H, T, H, T, H,T,
0 AS; = S(pli=1) —S(p)
® BAQ: = AS; + D (pV|p®)
0 AS = S(p©) = S(p®) = S(ps) — S(p§)

k

BAQ = AS + Y D(p“ V) 2 As

i=1

(AS)?
+ ——
k-log-d

energy—time tradeoff ? attainable ? thdyn. “reversibility” 7 TLIT]
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lterated SWAP process

k
STV p0) = =3 [0 (log o — log p=V)]
' i=1

k
(k—o0) i— i—1)y—1 i—1)y—1
SN w0 (D) )] = o0,
i=1
= Landauer bound sharp with d = d% — oo

@ Anders/Giovannetti (2012): pl) := gl + - ps. Then:

k
i i D(psllps) + D(p§llps)
i=1

— matches our lower bound > (AS)?/k for k swaps
— bound for general processes: > M(AS,d%) > (AS)?/k?

Caveat: What if rank(p§) < rank(ps) ? T
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Conclusion & technical questions

@ minimal assumptions: ps ® e~ A Psr
@ LP equality: BAQ = AS + I(S': R') + D(pkllpr)

o finite-size effects: SAQ > AS + éﬁgd

— 10% — 50% for reservoir of N < 5 qubits
— model for energy-time tradeoff

@ tight bound for AS < 0?7 [possibly AS < —logd]
@ take I(S' : R')-term into account
° /BAQ Z F(PSaPZgad)

@ formulation & proof for C*-dynamical reservoir/system Tm
UNIVERSITAT
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Thermodynamics of information processing

von Neumann (1949):

Landauer (1961):

Bennett (1973):

computers, biological systems, brain:
> kgT heat for every computing operation

— heat dissipation for logically irreversible
operations, e.g. erasure

—kgTlog?2 per bit erased

— justification by 2" Law

— reversible computation (esp. quantum)
— but prone to error (— error correction)
— energy expense for error correction

— year 2000: ~ 500kgT per bit

Maxwell (1871):
Szilard (1929):

Maxwell’'s Demon Tu-“
Szilard engine TECHNISCHE
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Why erasure?

computation result / error syndrome “0” /“1” in register S

“‘unknown” to outside: ps = (1(/)2 1(/)2>, S(ps) = 1bit

before next computation / error correction:
_ (12 0 , (1 0
RESET: ps = ( / 1/2> o ph= (o 0)

cannot do it reversibly:
0)s[0)pr = [0)s]0)mr > [0)5[0)n
[Dsl0m = sy = [0)5]0)ar 2?7

another way to see this: unitaries preserve spectrum

— need resource: e.g. reservoir at temperature T
more generally: “replace” ps by any given pf Tu-“

TECHNISCHE
UNIVERSITAT

MUNCHEN



Formulation & Proof Finite-size effects Sharpness of BAQ > AS
00000 000000000 000

Derivation: using 2 Law (Landauer, ...)

@ want: possible states “0”/ “1” — definite final state “0”
@ = S,.m decreases by log?2
@ = by2 Law: §M ~_ giniial > 1500

environ environ —

©Q = by Th-dynamics: AQ.uwiron > kgTlog?2 .

more generally: all logically irreversible operations

@ bit erasure: a+— 0
@ AND: (a,b) — (a,a ANDb)
@ OR: (a,b) — (a,aORb)

o ... TI.ITI
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Derivation:

O Logical Zero ® Logical One

S = information-bearing d.o.f.

E = velocity, exact location, ...

1-particle gas

3 — 4: isothermal compression

AQ = —AW

v/2
_ / p(V')aV'
\%4

V/2 1-kaT
= —/ —kf‘ %
y v

= kpTlog?2 .

(if “quasi-static™!)
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Pureness of final state
d

Sharpness of BAQ > AS

d
Amin(ps) > Z)\,T(PISR) = Z)‘,T(PS@)PR) > d A pin(ps) Amin(pr)

i=1 i=1
—BHpax —BHmax
e e

)\min(pR) = Tr [e—ﬁH] 2 de—BHmin

Min(P5) = B(Huu—Hun) > =2
Amin(ps) — B

)

min (

— “To erase 1 qubit”, need:

@ zero-temperature reservoir (5 = oo, i.e. BAQ = o0)

o formally: H,yp = +00
inthiscase: d< oo = AQ =
d =00 — later

m
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Example 2: Erasure towards pure states

swan - (3 0) o ()0)

@ ps ® pr — ps ® pk preserves rank
= [BAQ = oo whenever dim(R) < oo

@ For d = co: permutation of product eigenstates
PR = (0, r1,0,r,0,73,0, 74,0, r5,0,...) over (2
p;{ = (0,5‘17‘],0,521"],0,5’11‘2,0,527‘2,0,S17‘3,...)

Choose: r; =0,r3 = (1 —¢)sira, ra = (1 —€)sara, ...
= D(pgllpr) = —log(1 —¢)

= attain Landauer limit arbitrarily closely
but need d = oo and infinitely many +oo energy levels.
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