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State discrimination

A single copy of a state is know to be either ¥/ or f ,
with prior probability 7}y, , 7)¢

State
preparator

Goal: distinguish the two possibilities

Known fact:

Non orthogonal quantum states
cannot be perfectly discriminated

Simplest problem:

Quantum states ¥/, & are pure




Minimum error discrimination
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| E: Outcome of the measurement

1=guess ¥/  2=guess &
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Unambiguous discrimination

| E: Outcome of the measurement
1=guess W/ 2= guess f O = failure

Tested state
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Discrimination with error margin m

E: Outcome of the measurement
1=guess W 2= guess f O = failure

1.0
Tested state

S
4 prepared
— 0
1.0
b
f prepared

* Highest probability of success for a fixed probability of error



Discrimination with error margin m

| E: Outcome of the measurement
1=guess W/ 2= guess (f O = failure

Tested state

— e
& prepared | .
= B B

We require:

Pe S M We maximize: Ps = 1y (1|1, M) +ne p(2|€, M)




Discrimination with error margin m

| E: Outcome of the measurement
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Discrimination with error margin m

W/ |

E: Outcome of the measurement
1=guess W 2= guess f O = failure
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Discrimination with error margin m

| E: Outcome of the measurement
1=guess W/ 2= guess (f O = failure

Tested state

4 prepared

f prepared




Discrimination with error margin m

E: Outcome of the measurement
1=guess W 2= guess ./f O = failure
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State discrimination - Generalizations

Discrimination of N pure states

Approach Status

Minimum error Known N&S conditions
Unambiguous Recently solved for N=3
Discrimination with error margin  Unknown

Discrimination of two mixed states

Approach

Minimum error Solved
Unambiguous Still partially open
Discrimination with error margin only a bound exists

Numerical aproaches: All these problems can “effectively” treated
using Semidefinite programming.



Quantum channel discrimination

Quantum channel: I
 The most general time evolution of a system

* Linear, completely positive and trace preserving mapping on L(?[A)

Possible testing schemes:

<]—- D— Simple scheme
AlE

- Ancilla assisted scheme




Channel discrimination — know facts

Discrimination of two unitary channels

Approach

Minimum error Known
Unambiguous Known

Discrimination with error margin Known

Discrimination of two arbitrary channels

Approach

Minimum error Unsolved
Unambiguous Unsolved

Discrimination with error margin Unsolved

For special types of channels minimum error discrimination is
solved, conditions for unambiguous discriminability exist



Discrimination of measurements

Quantum measurement:

« Adevice that accepts a quantum system and
produces only a classical signal

- Mathematically we describe it by M < { M. }r
Positive Operator Value Measure (POVM) 1)i=1

Possible testing schemes: Z M; =1

M/N i

Q ._ Simple scheme M. >0

MJN

A.:
B

[ Ancilla assisted schemes




Discrimination of measurements

Challenge:

» efficient characterization of most general testing scheme
e Simultaneous optimization of the parameters

Solution;

Mathematically treat measurement as a measure&prepare
channel and use the tools for channels.

POVM {l\/li}irzlon H, <> channel from H, into C_,
where outcome 1 is encoded

AD‘: into ON states | Dj,@_
Z\ i Tr(pM;)




Mathematical framework of
Process POVM

The tested channel is described in CHOI-JAMIOLKOWSKI
iIsomorphism:;
M= MoI(|QQ) Q) = |i)]i)
= > liyile M

A test of a channel is described by Process POVM:

T ={T.} T. € L(C, @ Ha)
— ZTC: =1Q® PA,
T

Process POVM T
describes probabilities of

p(C ‘ M T) =17 (TCT A[) outcomes C obtained in a

test of a channel M



Optimal discrimination of

measurements

* Equally as for state or channel discrimination we define:

M/N
+

T

Pe = N p(m|M,T) +na p(n|N, T)
Pe = N DM, T) 4+ nar p(mIN, T)
pr=nm p(fIM,T)+nn p(fIN.T).

« The conclusion one can make in general:

Discrimination of measurements can be seen as
multiple discrimination of states that are interlinked
by the normalization of the Process POVM



Qubit Von Neumann measurements

M, N Two projective measurements to be discriminated:
1
My =lp)el  Mp=1-M =|p )]
Ny = |) ()] Ny =1I—Ny =) (|

Thanks to block diagonal structure of M, N
it suffice to consider

M= i
N, M, =Yl on® < "

ce{m,n,f}

il @ M

Problem can be reformulated as:
maximize Ds= .. Tr(nMHZ.(m) M; + nNHi(")N@-),
for pe<m

vi H™ +H™ +HT =) i=1,2
Tr(p) =1
0

a" >

2



Qubit Von Neumann measurements

M1 N Universal NOT operation 1" My = |p){¢l

1 N, =
T(M) = My T(N) =N, ks

Symmetry
HYY =T(H")  p=3l

can be imposed without loss of generality.

The problem is now specified by:

mazimize ps = na (Q2H™ |0) + nae (W]2H™ [4)
for pe<m

oH™ wog™ LopM =1  HY >0

This is formally equivalent to a discrimination of pure
states |)and [¢)) by a POVM E,. = 2H\".



Qubit Von Neumann measurements

Optimal discrimination procedure: My = |p){p]

result i chooses a pair of
states which should be
optimally distinguished
by measurement D;.

for i =1 the state X is either |¢*) or |¥™)
for i =2 the state X is either |¢) or |¥)

This procedure is optimal for minimum error,
unambiguous discrimination and discrimination
of measurements with fixed error margin



Qubit Von Neumann measurements

When is a simple discrimination My = [p){¢|
scheme optimal? Ny = |[¢) (]

M/N
Q ._ Simple scheme

Single measurement detection regime
(very unbalanced prior probabilities)
iIn unambiguous discrimination

Minimum error discrimination of qubit Von Neuman
measurements (very unbalanced prior probabilities
require classical processing of outcomes)

M/N

-




Our derivation generalizes easily to discrimination of

N - Von Neumann measurements on gubit

e optimization is equivalent to discrimination of the
corresponding N pure states defining the measurements

Two noisy qubit measurements
 Von Neumann measurements mixed with white noise

1—6
My = dlg)el+ ——1 My = Syt + ——1I

1—9 1—9

Ny = Byl + o1 No = 8l + —o T

« Optimization is equivalent to a discrimination of states
defined by operators M, N, .



Two Trine measurements on a qubit

Ancilla assisted scheme
with maximally entangled

_ state is optimal
o) P

Measurement D
discriminates pairs of
states differing angle 6



Optimal unambiguous discrimination:

2
M, = §|0><0|Z
2T
My = Rx|—|(M)
47

1.0¢
Maximally entangled initial state
0.8f
: Optimal strategy
&0.6;
0.4
02: Failure probability
g | for different angles &
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Two Trine measurements on a qubit

for 0=r

MI%

Ancilla assisted scheme
with non-maximally
entangled state is optimal
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1) Introduction

In this work we pressent an experimental setup of one-

copy optimal unambiguous (probabilistic) discrimination

of two, in general incompatible, Von Neumann projective
measurements A and B. To be optimal, this quantum
information processing task requires pairs of entangled
particles and as part of the analyzing protocol conditionally
performed unitary operation depending on the measured
results on a probe particle. In our experiment we discriminate
two polarization measurements A, B on a single photon.

4) Photon source

Our linear optical protocol requires photon pairs entangled in
polarization. Photon pairs are generated by SPDC in BBO crystal,
type Il., degen. 810nm. Photons are entangeled at non-polarizing

2) Optimality of the setup

Using the mathematical formalism of process positive-operator valued measure (PPOVM)
[1] one can prove that the presented unambiguous discrimination [2] protocol for the Von
Neumann measurements A,B is optimal.

[1] M. Ziman, Phys. Rev. A 77, 062112 (2008), G. Chiribella, G. M. D'Ariano, P. Perinoti, Phys. Rev. A 80, 022339 (2009)
[2]1. D. Ivanovic, Phys. Lett. A, 123:257 (1987), D. Dieks, Phys. Lett. A, 126:303 (1988), A. Peres, Phys. Lett. A, 128:19 (1988)

3) Feed-forward
The signal from the detectror (TTL pulse, 5V, 30ns) is
modified by a passive voltage divider and led directly
to a phase modulator (half-wave voltage= 1.55V). It
takes 17ns between photon detection and producing
electronic signal, the TTL puls. Because of
this, it is necessary to delay the 2" photon.

APD-single photon detector, coax-coaxial cable, VD-passive valtage
divider, F-optical fiber, DL-delay line, PM-electro-optical phase modulator

beam splitter 50:50. BS veam spiiter HWP ;ss u“:: o PM Crmms
;i i non-polarizin arization ase
prepared state: |[H;V,) — |V;Hy) reconstructed density matrix 505‘;’:’"“ 9 nalk-wave plate e phase modulator
purity 97,8%, fidelity 99,2% . Re(p) = VRG variabie couinl cabel &
HOM dip visibility 94% oant b PBS NE rato coupler pol passive votage
rus\ pasEY S maintaining fibers divider
INPUT INPUT a..-?-' spltor - bulk from 100:0 o 0:100
signal idler % D singie photon C input / output ot beam 10 — :‘;:Ic':l‘:"::‘r"‘”g
v v /0“ detector coupling lens ight beam.810nm PATOOHP
~ /0 .
Hpol 1w 0 inconclusive resull  conglusive results = D1 (D2) 6) Photon ana|y5|s
we don't know  corresponds to measurement A (B) o
Each polarization measurement,
—/— the "Black box" measurement in base
=/ A (B) on the probe photon can give two

il

a.
veo U & il

=/ W

y
ort2 ] -
) = M2z1-1

\ §

measurement

basis A, B are ::% A5, BS
set by these /

HWP and QWP

" 5) "Black box"

= Von Neumann measurement A or B

The four p

- balanced Mach-Zehnder interf.

- qubit recoding - from polarization
to path encoding

- conditional feed-forward action

- MZI actively stabilized

results, represented the two basis states
A5 or A4 (B5 or B4). It corresponds to
measurement of the proben photon by
the detector D4 or D5.

Then the knowledge about the applied
measurement A or B on probe photon is
encoded into the 2™ photon of the pair.

- Mach-Zehnder interf. "variable" from
balanced to completely unbalanced arms

= VRC = the variable attenuation

- unambiguous state discrimination

- MZI actively stabilized

detector D5 click - We can directly apply
the unambiguous state discrimination on

the second photon. We discrimate states
corresponding to A5 and B5.

detector D4 click - The state of the
second photon need to be modified

(to get the same state as when the probe
photon is detected by detector D5)

This modification is done by means of
the electronic feed-forward. The states
corresponding to A4, B4 are changed to
states A5, B5. Then the unambiguous
state discrimination is applied

Unambiguous state discrimination

The appropriate

After the feed :
u



Summary

« Discrimination of measurements can be seen as
multiple discrimination of states that are interlinked
by the normalization of the Process POVM

Qubit Von Neumann measurements

« Discrimination is formally equivalent to a discrimination of
pure states |©) and [1/) by a POVM.

* In general ancila assisted test with feed-forward of the
measurement outcome is needed

« The optimal probe state is not always maximally entangled

* For minimum error discrimination just simple
test procedure suffices

Open questions:

« How to solve discrimination between two Von Neuman
measurements on a qudit



References:

Process POVM and Q. Comb framework:
M. Ziman, “Process POVM: A mathematical framework for the description of process
tomography experiments”, Phys. Rev. A 77, 062112 (2008)

G. Chiribella, G. M. D'Ariano, P. Perinotti, “Theoretical framework for
quantum networks”, Phys. Rev. A 80, 022339 (2009),

Unambiguous discrimination of pure states:
. D. Ivanovic, Phys. Lett. A, 123:257 (1987),
D. Dieks, Phys. Lett. A, 126:303 (1988),
A. Peres, Phys. Lett. A, 128:19 (1988),
G. Jaeger and A. Shimony, Phys. Lett. A, 197:8387 (1995)

Minimum error discrimination:
C. W. Helstrom, Academic Press, New York (1976)

Discrimination with fixed error margin (or fixed failure probability):
H. Sugimoto, et.al. T. Hashimoto, M. Horibe, and A. Hayashi, Phys. Rev. A 80, 052322 (2009)
E. Bagan, R. Mufioz-Tapia, G. A. Olivares-Renteria, J. A. Bergou, Phys. Rev. A 86, 040303 (2012)
T. Hashimoto, A. Hayashi, M. Hayashi, M. Horibe, Phys. Rev. A 81, 062327 (2010)



Thanks for your attention.



