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State discrimination 

State 

preparator 

• A single copy of a state is know to be either        or      , 

with prior probability         ,  

• Goal: distinguish the two possibilities 



Known fact: 

 Non orthogonal quantum states  

cannot be perfectly discriminated 



Simplest problem: 

 Quantum states      ,     are pure  



Minimum error discrimination 

 prepared 

 prepared 

Outcome of the measurement 

Tested state 

1 ≡ guess   2 ≡ guess  



Unambiguous discrimination 

 prepared 

 prepared 

Outcome of the measurement 

Tested state 

1 ≡ guess   2 ≡ guess   0 ≡ failure 



Discrimination with error margin m 

 prepared 

 prepared 

Outcome of the measurement 

Tested state 

1 ≡ guess   2 ≡ guess   0 ≡ failure 

• Highest probability of success for a fixed probability of error 



Discrimination with error margin m 

 prepared 

 prepared 

Outcome of the measurement 

Tested state 

1 ≡ guess   2 ≡ guess   0 ≡ failure 

We require: 

We maximize: 



Discrimination with error margin m 

 prepared 

 prepared 

Outcome of the measurement 

Tested state 

1 ≡ guess   2 ≡ guess   0 ≡ failure 



Discrimination with error margin m 

 prepared 

 prepared 

Outcome of the measurement 

Tested state 

1 ≡ guess   2 ≡ guess   0 ≡ failure 



Discrimination with error margin m 

 prepared 

 prepared 

Outcome of the measurement 

Tested state 

1 ≡ guess   2 ≡ guess   0 ≡ failure 



Discrimination with error margin m 

 prepared 

 prepared 

Outcome of the measurement 

Tested state 

1 ≡ guess   2 ≡ guess   0 ≡ failure 

Unambiguous Minimum error 



State discrimination - Generalizations 

• Discrimination of N pure states 

• Discrimination of two mixed states 

Approach Status 

Minimum error Known N&S conditions 

Unambiguous  Recently solved for N=3 

Discrimination with error margin Unknown 

Approach Status 

Minimum error Solved 

Unambiguous  Still partially open 

Discrimination with error margin only a bound exists 

• Numerical aproaches: All these problems can “effectively” treated 

using Semidefinite programming.  



Quantum channel discrimination 

Possible testing schemes: 

• The most general time evolution of a system 

• Linear, completely positive and trace preserving mapping on  AL H

Quantum channel: 

A 

B 

Simple scheme 

Ancilla assisted scheme 



Channel discrimination – know facts 

• Discrimination of two unitary channels 

• Discrimination of two arbitrary channels 

Approach Status 

Minimum error Known 

Unambiguous  Known 

Discrimination with error margin Known 

Approach Status 

Minimum error Unsolved 

Unambiguous  Unsolved 

Discrimination with error margin Unsolved 

• For special types of channels minimum error discrimination is 

solved, conditions for unambiguous discriminability exist  



Discrimination of measurements 

Possible testing schemes: 

• A device that accepts a quantum system and 

produces only a classical signal 

• Mathematically we describe it by  

Positive Operator Value Measure (POVM) 

Quantum measurement: 

A 

B 

Simple scheme 

Ancilla assisted schemes 
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Discrimination of measurements 

Challenge: 

• efficient characterization of most general testing scheme 

• Simultaneous optimization of the parameters  

Solution: 

POVM             on                channel  from           into         , 

        where outcome  i is encoded 

        into ON states 
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Mathematically treat measurement as a measure&prepare 

channel and use the tools for channels. 



Mathematical framework of 

Process POVM  

• The tested channel is described in CHOI-JAMIOLKOWSKI 

isomorphism: 

• A test of a channel is described by Process POVM: 

A 

Process POVM  

describes probabilities of 

outcomes c obtained in a 

test of a channel  



Optimal discrimination of 

measurements 

• Equally as for state or channel discrimination we define: 

• The conclusion one can make in general: 

Discrimination of measurements can be seen as 

multiple discrimination of states that are interlinked 

by the normalization of the Process POVM 

i 



Qubit Von Neumann measurements 

Two projective measurements to be discriminated: 

Thanks to block diagonal structure of M, N  

it suffice to consider 

1M

2M

1N

2N



Problem can be reformulated as: 



Qubit Von Neumann measurements 

Universal NOT operation     : 
1M

2M

1N

2N



Symmetry  

 

 

can be imposed without loss of generality. 

The problem is now specified by: 

This is formally equivalent to a discrimination of pure 

states        and        by a POVM                  .  



Qubit Von Neumann measurements 

Optimal discrimination procedure: 

1M

2M

1N

2N



This procedure is optimal for minimum error, 

unambiguous discrimination and discrimination 

of measurements with fixed error margin  

for i =1 the state       is  either           or  

for i =2 the state       is  either        or  

 result i chooses a pair of 

states which should be 

optimally distinguished 

by measurement      . 

i 

i i 



Qubit Von Neumann measurements 

When is a simple discrimination 

scheme optimal? 

1M

2M

1N

2N



Single measurement detection regime  

(very unbalanced prior probabilities)  

in unambiguous discrimination 

Simple scheme 

Minimum error discrimination of qubit Von Neuman 

measurements (very unbalanced prior probabilities 

require classical processing of outcomes)  



N - Von Neumann measurements on gubit 

• optimization is equivalent to discrimination of the 

corresponding N pure states defining the measurements 

Our derivation generalizes easily to discrimination of  

Two noisy  qubit measurements 

• Von Neumann measurements mixed with white noise 

• Optimization is equivalent to a discrimination of states 

defined by operators      ,      . 1M 1N



Two Trine measurements on a qubit 

Optimal unambiguous discrimination: 

1M

2M
3M

1N

2N

3N



i 

i 

Ancilla assisted scheme 

with maximally entangled 

state is optimal  

Measurement     

discriminates pairs of 

states differing angle  

i 



Two Trine measurements on a qubit 

Optimal unambiguous discrimination: 

i 

i 

Ancilla assisted scheme 

with non-maximally 

entangled state is optimal  

1M

2M
3M

1N

2N

3N 

Failure probability 

for different angles 

for   
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Summary 

Qubit Von Neumann measurements 

• Discrimination is formally equivalent to a discrimination of 

pure states        and        by a POVM.  

• In general ancila assisted test with feed-forward of the 

measurement outcome is needed 

• The optimal probe state is not always maximally entangled  

• For minimum error discrimination just simple 

test procedure suffices 

 

Open questions: 

• How to solve discrimination between two Von Neuman 

measurements on a qudit 

• Discrimination of measurements can be seen as 

multiple discrimination of states that are interlinked 

by the normalization of the Process POVM 
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