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Why phase?
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Phase estimation
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A probe system, described by some density operator p(0) undergoes a phase
shift ¢ to become p(¢) = exp(-i9pG) p(0) exp(i1¢G). Here G is some operator, for

example
» G =N or N? (photon number of a single-mode probe)
*» G=N1+ N2+ N3+ .. (photonnumber of a multimode probe)

Then a generalized (possibly adaptive) measurement M is used to make an
estimate, ¢est, of value of ¢.

QUESTION: Is the estimate gest any good?



Measures of phase resolution

* Mean-square error:

MSE¢ = (Aqb ¢est)2 — <(¢est — ¢)2>¢

Remark: MSE, is a measure of phase resolution only for a specific ¢!

* Holevo variance:

VH,¢(¢est) = |<6i¢eSt>¢|_2 —1



Quantum Cramér-Rao inequality

If the estimate is unbiased in the neighborhood of some specific phase shift ¢,
the square root of the mean-square error (MSE ) can be locally lower bounded
with
1 1
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Main limitation: the QCR bound holds only for unbiased estimates

(Pest)p = P

Unbiased estimates are very rare!



Heisenberg limit

A key concept in phase estimation is the Heisenberg limit

0 (est) 2 Kk/(G)

Remark: the Heisenberg limit is valid only for certain phase estimation
schemes with single-mode probes but otherwise open to challenge!

What about

* multimode fields?

* multiple passes of probe states?
* nonlinear phase shifts?

* special (noncovariant and/or entangling) measurements?

M. J. Holland and K. Burnett, Phys. Rev. Lett. 71, 1355 (1993)
G. S. Summy and D. T. Pegg, Opt. Commun. 77, 75 (1990).
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Restricted range of phases

week ending

PRL 104, 103602 (2010) PHYSICAL REVIEW LETTERS 12 MARCH 2010

Quantum Metrology with Two-Mode Squeezed Vacuum:
Parity Detection Beats the Heisenberg Limit

Petr M. Anisimov,”™ Gretchen M. Raterman, Aravind Chiruvelli, William N. Plick, Sean D. Huver,
Hwang Lee, and Jonathan P. Dowling

Given G = N, they obtain
1
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Remark: up to a leading order this bound is linear in (V) , therefore

Acb ¢est —

* this result violates the Heisenberg limit only for small (V)

* and only in a small range of phase shifts about ¢ =0



Restricted range of phases and bias

IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 46 (2013) 035302 (10pp) doi:10.1088/1751-8113/46/3/035302

Unbounded quantum Fisher information in two-path
interferometry with finite photon number

Y R Zhang', G R Jin?, J P Cao', W M Liu' and H Fan'
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Remark: the authors use the quantum Cramér-Rao bound, but
* they use the QCRB for unbiased measurements

* asimple biased measurement can only yield zero error for ¢ =0 and x©



Restricted range of phases

New Journal of Physics

Sub-Heisenberg estimation of non-random

phase shifts

Angel Rivas' and Alfredo Luis*’

New Journal of Physics 14 (2012) 093052 (11pp)
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Remark: the authors use a coherent superposition of the vacuum and a
squeezed state as their probe state, but again the phase shift that can be
resolved is limited to small values: ¢ <1



The universal form of the Heisenberg limit?




Average performance
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The overall performance of the estimate can be characterized by the
concentration of the average probability distribution

p(6) = /O " dpp(6) p(0 + 616)

We assume p(¢) = 1/(27), that is, no prior information!



Average performance

A rigorous way of taking account of the range of phase is to average the
mean-square error (MSE) over all possible randomly applied phase shifts.
Thus, the average mean-square error (AMSE) is defined by

27
(b6a) = 5= | d0(8 60

This holds because the mean-square error is a linear measure of phase

resolution.



Universal Heisenberg limit
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Arbitrary phase Canonical phase

Lemma:
measurement measurement

Given the entropic uncertainty relations for the canonical phase measurements
on single-mode probes, we have

ka
(G +

5¢est >

y  with k= v/ 2m/e3 ~ 0.559

No phase estimation scheme can do better, on average, than the Heisenberg limit!



Universal Heisenberg limit

kA

This statement of the Heisenberg limit ODost >
5 Pest (G + 1)

™ is a non-asymptotic analytic lower bound that holds for all (G)

™ applies to all possible phase measurement schemes, and any estimate
biased or unbiased of a completely random phase shifts;

no prior information is available

™ implies that the accuracy of any scheme violating the Heisenberg limit is

essentially illusory

M. J. W. Hall, D. W. Berry, M. Zwierz, and H. M. Wiseman, Phys. Rev. A 85, 041802(R) (2012)
D. W. Berry, M. J. W. Hall, M. Zwierz, and H. M. Wiseman, Phys. Rev. A 86, 053813 (2012)



Conjecture

The optimal lower bound: 144}
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D. W. Berry, M. J. W. Hall, M. Zwierz, and H. M. Wiseman, Phys. Rev. A 86, 053813 (2012)



Conclusions

* We proved a general form of the Heisenberg limit for the average error
of arbitrary phase measurements, provided that the phase is a priori
completely unknown

% the case where the prior information is available was addressed in M. J. W.
Hall and H. M. Wiseman, NJP 14, 033040 (2012)

* This result rules out the possibility of super-Heisenberg measurements

% local super-Heisenberg measurements can be useful for phase sensing or
phase tracking: H. Yonezawa et al., Science 337, 1514-1517 (2012)

M. J. W. Hall, D. W. Berry, M. Zwierz, and H. M. Wiseman, Phys. Rev. A 85, 041802(R) (2012)
D. W. Berry, M. J. W. Hall, M. Zwierz, and H. M. Wiseman, Phys. Rev. A 86, 053813 (2012)
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