

AUSTRALIAN RESEARCH COUNCIL CENTRE OF EXCELLENCE

Universality of the Heisenberg limit for phase estimation

Marcin Zwierz, with Michael Hall, **Dominic Berry and Howard Wiseman**

Centre for Quantum Dynamics Griffith University Australia

CEQIP 2013 Workshop

Why phase?

Outline

- Phase estimation
- Measures of phase resolution
- Quantum Cramér-Rao inequality and its limitations
- Generally accepted form of the Heisenberg limit
- Schemes with illusory improvements
- Universal Heisenberg limit
- Conclusions

M. J. W. Hall, D. W. Berry, M. Zwierz, and H. M. Wiseman, *Phys. Rev. A* **85**, 041802(R) (2012) D. W. Berry, M. J. W. Hall, M. Zwierz, and H. M. Wiseman, *Phys. Rev. A* **86**, 053813 (2012)

Phase estimation

A probe system, described by some density operator $\rho(0)$ undergoes a phase shift ϕ to become $\rho(\phi) = \exp(-i\phi G) \rho(0) \exp(i\phi G)$. Here *G* is some operator, for example

- $G = N \text{ or } N^2$ (photon number of a single-mode probe)
- $G = N_1 + N_2 + N_3 + ...$ (photon number of a multimode probe)

Then a generalized (possibly adaptive) measurement *M* is used to make an estimate, ϕ_{est} , of value of ϕ .

QUESTION: Is the estimate ϕ_{est} any good?

Measures of phase resolution

• Mean-square error:

$$MSE_{\phi} := (\Delta_{\phi} \phi_{est})^2 = \langle (\phi_{est} - \phi)^2 \rangle_{\phi}$$

Remark: MSE_{ϕ} is a measure of phase resolution only for a specific ϕ !

• Holevo variance:

$$V_{H,\phi}(\phi_{\text{est}}) := |\langle e^{i\phi_{\text{est}}} \rangle_{\phi}|^{-2} - 1$$

Quantum Cramér-Rao inequality

If the estimate is *unbiased* in the neighborhood of some specific phase shift ϕ , the square root of the mean-square error (MSE_{ϕ}) can be *locally* lower bounded with

$$\Delta_{\phi} \phi_{\text{est}} \ge \frac{1}{\sqrt{F_Q(\phi)}} \ge \frac{1}{2\Delta G}$$

Main limitation: the QCR bound holds only for *unbiased* estimates

$$\langle \phi_{\rm est} \rangle_{\phi} = \phi$$

Unbiased estimates are very rare!

A key concept in phase estimation is the Heisenberg limit

 $\sigma(\phi_{\rm est}) \gtrsim k / \langle G \rangle$

Remark: the Heisenberg limit is valid only for certain phase estimation schemes with single-mode probes but otherwise open to challenge!

What about

- multimode fields?
- multiple passes of probe states?
- nonlinear phase shifts?
- special (noncovariant and/or entangling) measurements?

M. J. Holland and K. Burnett, *Phys. Rev. Lett.* **71**, 1355 (1993)

G. S. Summy and D. T. Pegg, Opt. Commun. 77, 75 (1990).

Illusory improvements

Restricted range of phases

PRL 104, 103602 (2010)

PHYSICAL REVIEW LETTERS

week ending 12 MARCH 2010

Quantum Metrology with Two-Mode Squeezed Vacuum: Parity Detection Beats the Heisenberg Limit

Petr M. Anisimov,* Gretchen M. Raterman, Aravind Chiruvelli, William N. Plick, Sean D. Huver, Hwang Lee, and Jonathan P. Dowling

Given G = N, they obtain

$$\Delta_{\phi} \phi_{\text{est}} = \frac{1}{\sqrt{\langle N \rangle (\langle N \rangle + 2)}}$$

Remark: up to a leading order this bound is linear in $\langle N \rangle$, therefore

- this result violates the Heisenberg limit only for small $\langle N \rangle$
- and only in a *small* range of phase shifts about $\phi = 0$

Restricted range of phases and bias

IOP PUBLISHING

JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 46 (2013) 035302 (10pp)

doi:10.1088/1751-8113/46/3/035302

Unbounded quantum Fisher information in two-path interferometry with finite photon number

Remark: the authors use the quantum Cramér-Rao bound, but

- they use the QCRB for unbiased measurements
- a simple biased measurement can only yield zero error for $\phi = 0$ and π

Restricted range of phases

New Journal of Physics

Sub-Heisenberg estimation of non-random phase shifts

Ángel Rivas 1 and Alfredo ${\rm Luis}^{2,3}$

New Journal of Physics 14 (2012) 093052 (11pp)

$$\Delta_{\phi} \phi_{\rm est} \propto \frac{1}{\langle N \rangle^p}$$

Remark: the authors use a coherent superposition of the vacuum and a squeezed state as their probe state, but again the phase shift that can be resolved is limited to small values: $\phi \ll 1$

The universal form of the Heisenberg limit?

Average performance

The overall performance of the estimate can be characterized by the concentration of the *average* probability distribution

$$\bar{p}(\theta) = \int_0^{2\pi} d\phi \, p(\phi) \, p(\theta + \phi | \phi)$$

We assume $p(\phi) = 1/(2\pi)$, that is, no prior information!

A rigorous way of taking account of the range of phase is to average the mean-square error (MSE_{ϕ}) over *all* possible randomly applied phase shifts. Thus, the average mean-square error (AMSE) is defined by

$$(\delta\phi_{\rm est})^2 := \frac{1}{2\pi} \int_0^{2\pi} d\phi \, (\Delta_\phi \, \phi_{\rm est})^2$$

This holds because the mean-square error is a linear measure of phase resolution.

Universal Heisenberg limit

Lemma:

Arbitrary phase measurement m

Canonical phase measurement

Given the entropic uncertainty relations for the canonical phase measurements on single-mode probes, we have

$$\delta \phi_{\text{est}} > \frac{k_A}{\langle G+1 \rangle}$$
 with $k_A := \sqrt{2\pi/e^3} \approx 0.559$

No phase estimation scheme can do better, *on average*, than the Heisenberg limit!

This statement of the Heisenberg limit

 $\delta\phi_{\rm est} > \frac{k_A}{\langle G+1\rangle}$

 \mathbf{V} is a non-asymptotic analytic lower bound that holds for all $\langle G \rangle$

 applies to all possible phase measurement schemes, and any estimate biased or unbiased of a completely random phase shifts; no prior information is available

☑ implies that the accuracy of any scheme violating the Heisenberg limit is essentially illusory

M. J. W. Hall, D. W. Berry, M. Zwierz, and H. M. Wiseman, *Phys. Rev. A* **85**, 041802(R) (2012) D. W. Berry, M. J. W. Hall, M. Zwierz, and H. M. Wiseman, *Phys. Rev. A* **86**, 053813 (2012)

D. W. Berry, M. J. W. Hall, M. Zwierz, and H. M. Wiseman, Phys. Rev. A 86, 053813 (2012)

- We proved a general form of the Heisenberg limit for the average error of arbitrary phase measurements, provided that the phase is *a priori* completely unknown
 - the case where the prior information is available was addressed in M. J. W. Hall and H. M. Wiseman, NJP 14, 033040 (2012)
- This result rules out the possibility of super-Heisenberg measurements
 - *local* super-Heisenberg measurements can be useful for phase sensing or phase tracking: H. Yonezawa *et al.*, Science 337, 1514-1517 (2012)

M. J. W. Hall, D. W. Berry, M. Zwierz, and H. M. Wiseman, *Phys. Rev. A* **85**, 041802(R) (2012) D. W. Berry, M. J. W. Hall, M. Zwierz, and H. M. Wiseman, *Phys. Rev. A* **86**, 053813 (2012) Thank you for your attention!

Also check out my poster on Nonlinear quantum metrology with noise