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Why phase? 



M. J. W. Hall, D. W. Berry, M. Zwierz, and H. M. Wiseman, Phys. Rev. A 85, 041802(R) (2012) 

•  Phase estimation 

•  Measures of phase resolution 

•  Quantum Cramér-Rao inequality and its limitations 

•  Generally accepted form of the Heisenberg limit 

•  Schemes with illusory improvements 

•  Universal Heisenberg limit 

•  Conclusions 

Outline 

D. W. Berry, M. J. W. Hall, M. Zwierz, and H. M. Wiseman, Phys. Rev. A 86, 053813 (2012) 



A probe system, described by some density operator ρ(0) undergoes a phase 
shift φ to become ρ(φ) = exp(-iφG) ρ(0) exp(iφG). Here G is some operator, for 
example 

Phase estimation 

Then a generalized (possibly adaptive) measurement M is used to make an 
estimate, φest, of value of φ. 

v  G = N or N2                              (photon number of a single-mode probe) 

v  G = N1 + N2 + N3 + ...    (photon number of a multimode probe) 

QUESTION: Is the estimate φest any good? 



Measures of phase resolution 

•  Mean-square error: 

Remark: MSEφ is a measure of phase resolution only for a specific φ! 

•  Holevo variance: 



Quantum Cramér-Rao inequality 

If the estimate is unbiased in the neighborhood of some specific phase shift φ, 
the square root of the mean-square error (MSEφ) can be locally lower bounded 
with 

Main limitation: the QCR bound holds only for unbiased estimates  

Unbiased estimates are very rare! 



A key concept in phase estimation is the Heisenberg limit 

G. S. Summy and D. T. Pegg, Opt. Commun. 77, 75 (1990). 

Heisenberg limit 

Remark: the Heisenberg limit is valid only for certain phase estimation 
schemes with single-mode probes but otherwise open to challenge! 

What about 

•  multimode fields? 

•  multiple passes of probe states? 

•  nonlinear phase shifts? 

•  special (noncovariant and/or entangling) measurements? 

M. J. Holland and K. Burnett, Phys. Rev. Lett. 71, 1355 (1993) 



Illusory improvements 



Restricted range of phases 

Given G = N, they obtain 

Remark: up to a leading order this bound is linear in         , therefore  

•  this result violates the Heisenberg limit only for small  

•  and only in a small range of phase shifts about φ = 0 
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We study the sensitivity and resolution of phase measurement in a Mach-Zehnder interferometer with

two-mode squeezed vacuum ( !n photons on average). We show that superresolution and sub-Heisenberg

sensitivity is obtained with parity detection. In particular, in our setup, dependence of the signal on the

phase evolves !n times faster than in traditional schemes, and uncertainty in the phase estimation is better

than 1= !n, and we saturate the quantum Cramer-Rao bound.
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Different physical mechanisms contribute to phase mea-
surement. Therefore, improved phase estimation benefits
multiple areas of scientific research, such as quantum
metrology, imaging, sensing, and information processing.
As a consequence, enormous efforts have been devoted to
improve the resolution and sensitivity of interferometers.

In what follows, we direct our attention to quantum
interferometry. The benchmark that quantum interferome-
try is compared against is one with coherent light input and
intensity difference measurement at the output of a Mach-
Zehnder interferometer (MZI). Without nonlinear interac-
tion between photons in the MZI, phase sensitivity of this

benchmark is shot-noise limited (SNL), namely "’SNL ¼
1=

ffiffiffi
!n

p
, where !n is the average number of photons [1].

In 1981, Caves pointed out that by using coherent light
together with squeezed vacuum one could beat SNL "’<
"’SNL (supersensitivity) [2]. In the work of Boto et al., it
was demonstrated that by exploiting special states of light,
such as N00N states (N-particle path-entangled states
jN; 0iþ j0; Ni), it is possible to beat the Rayleigh diffrac-
tion limit in imaging and lithography (superresolution),
while also beating SNL [3–6]. Finally, it was shown in
Ref. [7] that input state entanglement is important in order
to achieve supersensitivity.

We could place a limit on the supersensitivity, if we
assume the validity of the Heisenberg uncertainty principle
for phase and photon number uncertainties: "n"’ # 1.
This relationship easily translates into the Heisenberg limit
on the phase sensitivity of a N-photon state,"’HL ¼ 1=N,
due to the bound on photon number difference,"n $ N. In
order to define a similar limit for states with an indefinite
number of photons, characterized by the mean value !n, an
argument about finite energy is given—thus imposing the
following bound "n $ !n. Such a notion about the
Heisenberg limit can be traced back to, for example,
work by Ou [8], where he speculates that the fundamental
limit set by quantum mechanics on sensitivity is the

Heisenberg limit, "’HL ¼ 1= !n, since all analyses up until
then had not shown better than 1= !n sensitivity.
Experimental realization of a supersensitive phase mea-

surement that would be better than a SNL measurement
with coherent light have been hindered by the fact that
entangled states of light, with large number of photons, are
difficult to obtain. Therefore we turn our attention to the
brightest (experimentally available) nonclassical light—-
two-mode squeezed vacuum (TMSV). A state of TMSV

is a superposition of twin Fock states jc !ni ¼P1
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffi
pnð !nÞ

p
jn; ni, where the probability of a twin Fock

state jn; ni ¼ jniAjniB to be present depends on the aver-
age number of photons in both modes of TMSV, !n, in the
following way, pnð !nÞ ¼ ð1' t !nÞtn!n with t !n ¼ 1=ð1þ 2= !nÞ
[9].
Light entering a MZI in the TMSV state exits a lossless

interferometer in the state jc fi ¼ ÛMZIjc !ni, where the

MZI is described by the unitary transformation ÛMZI

(Fig. 1). This transformation, in terms of the field operators
for the optical modes â and b̂, is ÛMZI ¼ ÛP̂’Û ¼
exp½’ðâyb̂' b̂yâÞ=2), where P̂’ ¼ expð'i’ĜÞ de-

scribes accumulation of a phase difference ’; and Û ¼
exp½i !4 ðâyb̂þ âb̂yÞ) describes the 50-50 beam splitter,
with a !=2 phase shift for the reflected mode. In a linear
medium the generator of phase evolution is Ĝ ¼ ðn̂A '
n̂BÞ=2, where n̂A ¼ âyâ and n̂B ¼ b̂yb̂ are the photon
number operators in each mode.
Phase estimation is based on the detection of light at the

outputs of a MZI. Not all detection schemes are capable of
exploiting the full potential of nonclassical light to be
supersensitive and superresolving. For example, intensity
difference measurement, which is standard for optical
interferometry with coherent light, is not phase sensitive
at all if TMSV input is used [10]. In our Letter, we consider
parity detection for our measuring scheme. The parity
operator on an output mode A is #̂A ¼ expði!n̂AÞ. Parity
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Restricted range of phases and bias 

Remark: the authors use the quantum Cramér-Rao bound, but    

•  they use the QCRB for unbiased measurements  

•  a simple biased measurement can only yield zero error for φ = 0 and π	
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Abstract
The minimum error of unbiased parameter estimation is quantified by the
quantum Fisher information in accordance to the Cramér–Rao bound. We
indicate that only superposed NOON states by simultaneous measurements
can achieve the maximum quantum Fisher information with form 〈N̂2〉 for a
given photon number distribution by a POVM in linear two-path interferometer
phase measurement. We present a series of specified superposed states with
infinite quantum Fisher information but with finite average photon numbers.
The advantage of this unbounded quantum Fisher information will be beneficial
to many applications in quantum technology.

PACS numbers: 42.50.St, 42.50.Dv, 42.50.Ex, 42.50.Lc

(Some figures may appear in colour only in the online journal)

1. Introduction

Precise interferometric measurement plays a key role in many scientific and technological
applications, such as quantum metrology, imaging, sensing and information processing [1]. The
fundamental sensitivity bounds of phase measurement in the Mach–Zehnder interferometer
(MZI), as shown in figure 1(a), are of broad interest for those areas. For N identical uncorrelated
particles, the error of the phase measured in MZI on average decreases as 1/〈N̂〉1/2 which is
the shot-noise limit (SNL). In 1980s, it was pointed out that by using coherent light together
with squeezed vacuum we could beat the SNL [2]. It is also shown that using NOON state
[3] and quantum entanglement allows interferometric sensitivity that also surpasses this limit.
Instead of SNL, the ultimate limit imposed by quantum mechanics is the Heisenberg limit (HL)
with a generally accepted form 1/〈N̂〉 [4, 5]. Experiments exploring those topics have been
performed in various systems with photons [6, 7], ions [8], cold-atoms [9] and Bose–Einstein
condensates [10, 11]. However, it seems to be indicated in some works that the HL with form
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Remark: the authors use a coherent superposition of the vacuum and a 
squeezed state as their probe state, but again the phase shift that can be 
resolved is limited to small values: φ      1 

T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s
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Abstract. We provide evidence that the uncertainty in detection of small and
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Restricted range of phases 



The universal form of the Heisenberg limit? 



Average performance 

The overall performance of the estimate can be characterized by the 
concentration of the average probability distribution  

We assume p(φ) = 1/(2π), that is, no prior information! 



Average performance 

A rigorous way of taking account of the range of phase is to average the 
mean-square error (MSEφ) over all possible randomly applied phase shifts. 
Thus, the average mean-square error (AMSE) is defined by 

This holds because the mean-square error is a linear measure of phase 
resolution. 



Universal Heisenberg limit 

Given the entropic uncertainty relations for the canonical phase measurements 
on single-mode probes, we have 

Lemma: 

with 

No phase estimation scheme can do better, on average, than the Heisenberg limit! 

Arbitrary phase 
measurement 

Canonical phase 
measurement 



Universal Heisenberg limit 

This statement of the Heisenberg limit 

"   is a non-asymptotic analytic lower bound that holds for all  

"   applies to all possible phase measurement schemes, and any estimate 
biased or unbiased of a completely random phase shifts;  
no prior information is available 

"   implies that the accuracy of any scheme violating the Heisenberg limit is 
essentially illusory 

D. W. Berry, M. J. W. Hall, M. Zwierz, and H. M. Wiseman, Phys. Rev. A 86, 053813 (2012) 

M. J. W. Hall, D. W. Berry, M. Zwierz, and H. M. Wiseman, Phys. Rev. A 85, 041802(R) (2012) 



Conjecture 

The optimal lower bound: 

D. W. Berry, M. J. W. Hall, M. Zwierz, and H. M. Wiseman, Phys. Rev. A 86, 053813 (2012) 

!



M. J. W. Hall, D. W. Berry, M. Zwierz, and H. M. Wiseman, Phys. Rev. A 85, 041802(R) (2012) 

D. W. Berry, M. J. W. Hall, M. Zwierz, and H. M. Wiseman, Phys. Rev. A 86, 053813 (2012) 

Conclusions 

•  We proved a general form of the Heisenberg limit for the average error 
of arbitrary phase measurements, provided that the phase is a priori 
completely unknown 

v  the case where the prior information is available was addressed in M. J. W. 
Hall and H. M. Wiseman, NJP 14, 033040 (2012) 

•  This result rules out the possibility of super-Heisenberg measurements 

v  local super-Heisenberg measurements can be useful for phase sensing or 
phase tracking: H. Yonezawa et al., Science 337, 1514-1517 (2012)  



Thank you for your attention! 
 

Also check out my poster on 
Nonlinear quantum metrology with noise 


