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Causal inference  

and  

quantum non-locality? 
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Bell´s theorem 

  

The assumptions (causal relationships) of a LHV model impose constraints on the possible 

observed distributions. Those can be tested via Bell inequalities, that may be violated by quantum 

states. 

 



Task: Infer causal relationships from raw (perhaps marginal) data. 
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Our idea 

Rely on entropic information! 

 Concise characterization as a convex set 

 Naturally encodes the causal constraints 

 Quantitative and stable tool 
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DAGs 

 For n variables X1, ... ,Xn, the causal relationships are encoded in a causal 

structure, represented by 

 a directed acyclic graph (DAG), 

 with ith variable being a deterministic  

       Xi=fi(pai,ui) 

      of its parents pai and jointly independent noise variables ui 

 Some of the variables are not observed (latent variables) 

 The DAG encodes causal constraints as (conditional) independences 

 

... 

... 



Entropic cone 

Step 1/3: Unconstrained, global object 

 Entropic vector                  :each entry is the 

entropy          indexed by subset 
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 Defines a convex cone  

 Structure not fully understood, but... 

 

 ...contained in Shannon Cone, defined by 

subadditivity and monotonicity (polymatroidal 

axioms) 

 

 Shannon cone: 

Step 1/3: Unconstrained, global object 

Example: 3 variables → 

polymatroidal axioms → 



Entropic cone 

 Piece of cake! Conditional independences are 

naturally embedded in mutual informations 

 

 We can even relax (stable!) 

 

 

  C: cone of constraints 

 

 

 

Step 2/3: Choose candidate structure and add causal constraints 

→ 

 New global cone                of entropies subject to causal structure 

 

 



Entropic cone 

 Geometrically trivial: 

     just restrict              to observable coordinates 

 

 Algorithmically costly:            represented in 

terms of inequalities (use, eg, Fourier-Motzkin 

elimination)  

 

Step 3/3: Marginalize to  

                          : set of jointly observables 

 

      

Final result: description of marginal, causal entropic cone  

in terms of „entropic Bell inequalities“ 

[T. Fritz and RC, IEEE Trans. Inf. Th. 59, 803 (2013)] 

[RC, L. Luft, D. Gross, NJP 16, 043001 (2014)] 



 
 
 The entropic approach to Causal Inference 
 
 Applications 
        • Classical 
        • Quantum 
 Where to go from here? 



Classical 

RC, L. Luft, T. Maciel, D. Gross, D. Janzing, B. Schölkopf. 

 To appear in Conference on Uncertainty in Artificial Intelligence 2014  
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Common ancestors problem 

A hierarchy of causal relationship tests.... 

M=2 M=3 M=4 

Entropic approach: Polymatroidal axioms + Causal Structure + Marginalization 

 Can the correlations between n variables be explained by common ancestors 

connecting at most M of them? [Steudel and Ay, arXiv:1010.5720] 
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Quantum 

RC, C. Majens and D. Gross. In preparation.  
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 Entropic description of Bayesian networks with quantum „hidden“ variables 
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• Measurements disturb/destroy the quantum system 

• We need a rule mapping the quantum states to classical variables 

• Set of conditional independencies are fulfilled 

• For classical variable the entropy H corresponds to the Shannon entropy 



Quantum common ancestor networks 

 Marginal entropic cones coincide! 
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 For arbitrary quantum common ancestor DAGs the monogamy relation holds 

 Are these also valid for GPTs? 

Case n=3, M=2 in [J.Henson, R. Lal, M. F. Pusey arXiv:1405.2572] 

Quantum common ancestor networks 

Not difficult to generalize the proof for any n and M=2 
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 The new inequality witness the non quantumness of distributions that are not 

detected by the original one. 

Information causality 
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...and what we would like to know 
 

 Beyond Bell‘s theorem? 

 

 New information principles? 

What we know... 

                                 ... both in classical and quantum problems 



Thanks! 


