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Causal inference
and
guantum non-locality?
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Bell's theorem

The assumptions (causal relationships) of a LHV model impose constraints on the possible
observed distributions. Those can be tested via Bell inequalities, that may be violated by quantum
states.




Task: Infer causal relationships from raw (perhaps marginal) data.

How to do that?
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Challenge:
» Describe marginals compatible with DAGs...
> ...very difficult, non-convex sets (e.g., quantifier elimination by [Geiger and Meek, UAI 1999])

Picture from [Steeg and Galstyan, UAI 2011]
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Challenge:
» Describe marginals compatible with DAGs...
> ...very difficult, non-convex sets (e.g., quantifier elimination by [Geiger and Meek, UAI 1999])
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Our idea

Rely on entropic information!

» Concise characterization as a convex set

» Naturally encodes the causal constraints

» Quantitative and stable tool



Outline

» The entroplc approach to Causal nference
» Applications

> Where to go from here?



» The entroplc approach to Causal nference



DAGS

» For n variables X, ... ,X,, the causal relationships are encoded in a causal

structure, represented by
» adirected acyclic graph (DAG),
» with ith variable being a deterministic
Xi=fi(pa;,u;)
of its parents pa, and jointly independent noise variables u;
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DAGS

» For nvariables X, ... ,X,, the causal relationships are encoded in a causal
structure, represented by
» adirected acyclic graph (DAG),
» with ith variable being a deterministic
Xi=fi(pa;,u;)
of its parents pa, and jointly independent noise variables u;

» Some of the variables are not observed (latent variables)
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DAGS

» For nvariables X, ... ,X,, the causal relationships are encoded in a causal
structure, represented by
» adirected acyclic graph (DAG),
» with ith variable being a deterministic
Xi=fi(pa;,u;)
of its parents pa, and jointly independent noise variables u;
» Some of the variables are not observed (latent variables)

» The DAG encodes causal constraints as (conditional) independences
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Entropic cone
Step 1/3: Unconstrained, global object

» Entropic vector V & R2" :each entry is the
entropy S(Xs) indexed by subset S C {1,...,n}
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» ...contained in Shannon Cone, defined by
subadditivity and monotonicity (polymatroidal
axioms)
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Entropic cone
Step 1/3: Unconstrained, global object

» Entropic vector V & R2" :each entry is the
entropy S(Xs) indexed by subset S C {1,...,n}

» Defines a convex cone

» Structure not fully understood, but...

» ...contained in Shannon Cone, defined by

subadditivity and monotonicity (polymatroidal
axioms)

> Shannon cone: [,

Example: 3 variables — v = (H(0), H(A), H(B),H(C), H(A,B), H(A,C), H(B,C),H(A, B,C))

< H(A,B)+ H(A,¢) (I(B:C|A)>0)
H(A, B) < H(A) + H(B) (I(A: B) >0)
<H




Entropic cone

Step 2/3: Choose candidate structure and add causal constraints

CA > Piece of cake! Conditional independences are

A o naturally embedded in mutual informations

o ™ P(A1; A2) = p(M)p(Xa) [(Adr:22) =0
(B —A\3—{C)
4 = e [p(A, B|\) = p(A])\l)p(BPHJ — [I(A : B|A\;) = UJ

» We can even relax (stable!)
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» C: cone of constraints

> New global cone [,, N C of entropies subject to causal structure



Entropic cone

Step 3/3: Marginalize to M

W > M c 2llont get of jointly observables

J » Geometrically trivial:

just restrict ', N C to observable coordinates

> Algorithmically costly: '» N C represented in
terms of inequalities (use, eg, Fourier-Motzkin

elimination)

Final result: description of marginal, causal entropic cone (I',, N C)IM
in terms of ,entropic Bell inequalities”

[T. Fritz and RC, IEEE Trans. Inf. Th. 59, 803 (2013)]
[RC, L. Luft, D. Gross, NJP 16, 043001 (2014)]
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Classical

RC, L. Luft, T. Maciel, D. Gross, D. Janzing, B. Scholkopf.
To appear in Conference on Uncertainty in Artificial Intelligence 2014
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Common ancestors problem

» Can the correlations between n variables be explained by common ancestors
connecting at most M of them? [Steudel and Ay, arXiv:1010.5720]

Entropic approach: Polymatroidal axioms + Causal Structure + Marginalization

Y I(Xy:X) < (M - 1)H(Xy)

1=2...., n

A hierarchy of causal relationship tests....

M=2 M=4
—> — /<
3 vy



Quantifying causal influences

=I(A:B)+I(A:C)—H(A) <0
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Quantifying causal influences

B=I(A:B)+I(A:C)—H(A) <0

1/2 ja=b=c
0, otherwise

® R
®  © %

I(A . B‘p&B) é CA—:»-B
B<I(A:Blpag) <Ca_p

p(A:a-,B:b,C:C):{




Quantum

RC, C. Majens and D. Gross. In preparation.



Classical/Quantum Bayesian networks?

» Entropic description of Bayesian networks with quantum ,hidden” variables
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Classical/Quantum Bayesian networks?

» Entropic description of Bayesian networks with quantum ,hidden” variables
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« Quantum variables respect strong subadditivity but not monotonicity

x H(ﬂA] ‘105’1) > 0
v H(A‘JOBICI) > 0
« Measurements disturb/destroy the quantum system
X H(paa,, A)
 We need a rule mapping the quantum states to classical variables

« I(A . B) S [(AlAg ‘ BlBg)

« Set of conditional independencies are fulfilled
’/I(A : B‘pAlB)]) =0

» For classical variable the entropy H corresponds to the Shannon entropy



Quantum common ancestor networks
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» Marginal entropic cones coincide!
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» Marginal entropic cones coincide!
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Quantum common ancestor networks

» Marginal entropic cones coincide!
(n)
P

PAI By |PACy
o“ﬂw 00

B)+I(A:C)< H(A
I(A:B:C)JrI(A:B)+I(A:C)+I(B:C) < H(A,B)
[(A:B:C)+I(A:B)+1(A:C)+1(B:C) < 5(H(A)+H(B)+H(C))

» For arbitrary quantum common ancestor DAGs the monogamy relation holds

Z [(X;:X;) < (M—-1)H(X;)

.....

> Are these also valid for GPTs?

Case n=3, M=2in [J.Henson, R. Lal, M. F. Pusey arXiv:1405.2572]
Not difficult to generalize the proof for any n and M=2
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Information causality

[Nature 461, 1101 (2009)]
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» Restricting to the marginal information: {X,, B}, {X;, B1}, {Xo X} {M}

I(XU » B(]) +I(X1 . Bl) < H(ﬂ{[) +I(.Xg Xl)
Same as ineq as derived in [Al-Safi and Short,PRA 84, 042323 (2011)]

» Restricting to the marginal information: {X,, X;, By}, {Xq, Xy, B}, {M}

I(XO BO) +I(Xl . Bl) +I(X0 " XllBl) <_: H(A’f) +I(X0 . Xl)



Information causality

I(XUZBo)+I(XliBl) §H(JW)+I(X0X1)
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Information causality
I(X{] . Bo) +I(X1 . Bl) S H(ﬂif)+f(Xg . Xl)
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» The new inequality witness the non quantumness of distributions that are not
detected by the original one.
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> Where to go from here?
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» Entropies allow for a non-trivial, quantitative and operational discrimination between
causal relationships...




What we know...

» Entropies allow for a non-trivial, quantitative and operational discrimination between
causal relationships...

... both in classical and quantum problems

...and what we would like to know

Inferring Cellular Networks
Using Probabilistic Graphical Models

Nir Friedman

N_/’_——/
Bell inequalities for social networks

I’m happy to unveil a new paper, “A sequence of relaxations constraining hidden
variable models”.

Depending on your interests, I’m including two different overviews. One comes from

the social networks perspective and the other from the quantum phySiCS pErSpECtiVE‘ Hvigh-lhmughput genome-wide molecular assays, which pr9be cellular ne?\yofks from erates predictions of systen
different perspectives, have become central to molecular biology. Probabilistic graph- different conditions (as rel

hidden variables. ical models are useful for extracting meaningful biological insights from the resulting vations) and illuminates the

data sets. These models provide a concise representation of complex cellular net- system components in thes

works by composing simpler submodels. Procedures based on well-understood focus on probabilistic md

principles for inferring such models from data facilitate a model-based methodology stochasticity to account f

for analysis and discovery. This methodology and its capabilities are illustrated by noise, variability in the bi

several recent applications to gene expression data. and aspects of the system

-

» Beyond Bell's theorem?

» New information principles?



Thanks!

Bell's  [NEQUALTY



