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Multiparty computation

Z1 Y1
To T4
Bob ~ (Y1, Y2, Y3,Ys) = f(21, 72,73, 74) @
Y2 Ya
zs3 Y3

Examples: online voting, auctions, etc. ..
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Multiparty computation

We want to implement this with no trusted third party:

Alice

Bob &/ Dan

l

Charlie
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Oblivious transfer

oT
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Bit commitment

be{0,1} —— BC —— committed

open —— BC —b

Frédéric Dupuis CEQIP 2014 6 June 2014 5/40



OT and BC

@ Classically, BC is not enough for multiparty computation

@ There exists a quantum protocol for OT using BC [Crépeau
1994]

@ However: BC is impossible from scratch
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Restricted adversaries

To make a BC protocol, we need to make assumptions:

@ Computational assumptions: assume there is no efficient
algorithm for solving certain problems

@ Physical assumptions: assume an adversary is physically
restricted in some way

e Limited memory

Limited quantum memory

Noisy (quantum) memory

Noisy channel

Limited interaction between quantum systems

Frédéric Dupuis CEQIP 2014 6 June 2014 7/40



Making use of the restrictions

@ Goal of this talk: show how to make use of physical
restrictions to construct protocols.

@ Key idea: physical restriction = bound on adversary’s
uncertainty about something
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Measuring uncertainty

@ How can we measure uncertainty?
@ Entropy: H(X), uncertainty about a random variable X:

H(X) == pslogp,

@ Why?
e Compression: given n instances of X, we can compress it
into ~ nH (X) bits
e Randomness extraction: given n instances of X, we can
extract ~ nH (X) bits of uniform randomness
e What about just one instance of X? H(X) is not good
enough.

Frédéric Dupuis CEQIP 2014 6 June 2014 9/40



Measuring uncertainty

Why is H(X) not good enough? Consider this distribution:

1
2

Probability

N I 2

X
Can’t really compress, can’t extract more than 1 bit of
randomness. But:
1 1
H(X) =~ log(2) — 5 log(n)
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Measuring uncertainty

If we cannot use H(X) to measure uncertainty, what should we
use?

@ Compression and randomness extraction require two
different measures

@ Compression: Hy,..(X) (won't talk about this)
@ Randomness extraction: Hy(X)
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Min-entropy
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Hin(X) = — log(probability of guessing X).
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Min-entropy: classical-quantum

What if we have quantum information about X'?

@ Alice has = with probability p,

@ Bob has p” whenever Alice has =

@ Represent this with the CQ state pxp := >, p.|2){(z|x ® p§.
@ Bob tries to guess x by measuring his state

H,in(X|B), := — log(probability of guessing X).
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Min-entropy: classical-quantum

X
P
B gl X
M
VS
X
®
XI

Houin(A|B), := —logdx F(®, M(p))*
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Min-entropy: classical-quantum

Some properties of the min-entropy:

@ Between 0 and log d (follows from the fact that the guessing
probability must be between 1/d and 1)

@ Can guess with probability 1: H,;, = 0
@ Can’t do better than 1/d: H,,;, = logd
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Min-entropy: fully quantum

What if X is now quantum as well?

A

P
B|—|A
D]
VS

A
)

A/

Hmin(A|B)p = _log dAF<q)7D(p))2
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Min-entropy: fully quantum

@ In this case, the min-entropy can be negative!

@ Example: maximally entangled state:
&) = 3¢ |2)4 ® |z) 4 has a min-entropy of
Huin(AJA")p = —log d.

@ Ingeneral, —logd < H, < logd
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Privacy amplification

@ We have X, adversary has p},, we somehow know that
Hpin(X|B) = k.

@ What can we do?

@ We can extract ~ k bits of uniform, independent
randomness

@ How? Apply a randomly chosen function F(-) to X

S
Uniform
X ’—L‘ Y .
F (¢ bits)

B

What we want at the output:

Unifsy ®pp
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Privacy amplification

S
Uniform
X g v,
[F] s

Theorem (Privacy amplification)

||USYB — Unifgy ®pB||1 < —Hmin(X|B),

= Just need ¢ to be a bit smaller than H,,;,(X|B).
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Bounding the min-entropy

How can we get min-entropy bounds in protocols of interest?

@ We want to be able to make statements such as
Hnin(A|E) = k where E is an adversary’s information about
some A of interest.

@ Often, it is easy to make a statement about an intermediary
step, but we want the bound to “survive” the rest of the
protocol
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Bounding the min-entropy

For example:

p

¥ q qubits | £

Very easy to bound the min-entropy:
Huin(A|E) = —q

for any p.
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Bounding the min-entropy

What if the honest parties then do something to A?

A|—|B
M

p

¥ q qubits | £

Some examples:
@ Measure in random basis
@ Sample random subsets of qubits
@ Etc...
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Bounding the min-entropy

\¥ q qubits | £

We want to be able to say
Hyin(B|E) = g(Hmin(A|E))

for an appropriate function g that will depend on M.
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A small caveat

@ H,vs H.i,
@ H, is “morally” equivalent to H,,;, (for example, privacy
amplification still works with a bound on H, only)
@ Can convert between the two:
e For CQ states: Hyin(X|B) < Ha(X|B) < 2Hpin(X|B)
e For general states: Hyin(X|B) < H2(X|B), and
Hy(X|B) + logd < 2(Huin(X|B) + log ).
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A general bound

1 1
LHL(CIE) 2 g (S H(Ar o AnE) )
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Sampling

1 1
FH(AS\ES) & R (1Haldr, ... 4n|E))

| Sc{l...n} R(z)
S| =k '
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Sampling: the CQ case

1 1
S Hy(Xs|ES), % C (EH2(X1, .. ,Xn|E)) .

 Sc{l,...,n} C;(@
S| =k
— X5 0.5 /
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Sampling: CQ and fully quantum

Rateifunction
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Measuring in a random BB84 basis

1 1
LH(X7156", 27 (Hu(Ar o A E))

— X1 € {071}

— 61 ¢ {+, X}

— X2 € {0,1}

— 92 € {+7 X} ’Z:(x)

X, e{0,1}

— O, € {+,x} 0.5
P

D

N\ E -1 -0.5 0 0.5 1
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Bounded quantum storage model (BQSM)

At some point in the protocol, all parties are assumed to have at
most ¢ qubits of storage (but unlimited classical storage).

Alice Bob
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Weak string erasure

Bit commitment can in turn be reduced to weak string erasure
[Konig, Wehner, Wullschleger 2012]:

Alice Bob

X" er {0, 1} —— WSE —— T <k [n], X7

For security, we want:

@ 7 is distributed uniformly over [n] and is independent of
anything Alice has.

@ If Bob is dishonest, then X H,,,;,(X"|B), > A, where oxnp is
the state at the end of the protocol.
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Weak string erasure

Given a protocol for weak string erasure with

A>Q (logn) ’
n

we can do bit commitment.
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Protocol for weak string erasure
— I
16, % )

O1,...,0
Output Output:
Ti,. .y Tn ZT={i:0;=0;}
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Protocol for weak string erasure

Does this protocol satisfy the security definition?

@ 7 uniform and independent. Yes: Z only depends on the
XOR of #™ and 6™ = Alice has no control over it.

@ We need that, for a dishonest Bob, <+ H,,,;,(X"|B), = A.
We need our theorem to guarantee the second point.
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Protocol for weak string erasure

|©) .
: — 64
A, : s i,
2) N
O
— 1
E%S — 0,
— T,
E%S — 0,
---- Memory bound: ¢ qubits max ----------
O1,....0,
Output: Output:
Liy---5Tn I:{zez:@}

Tz
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Protocol for WSE: dishonest Bob

Aq
|®)

7?7
A
|®)

&k
g

---- Memory bound: ¢ qubits max - -><------

pAnBQBc
917---;9n dBQ:2q
Output: Output:
iy, Tn IT={i:0,=0;}
Ir
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Protocol for weak string erasure

Recall our theorem on measuring in random BB84 bases:

1 1
EH2(XH\BQBC(9") < Y <EH2(An‘BQBC)>

7(2)
I
0.5
/
-1 -0.5 0 0.5 1

But we know that
HQ(An|BQBC) = —q

because of the memory bound.
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Protocol for weak string erasure

()
1
0.5
T
L — Py
1) x
1 -0.5 0 0.5 1

We get a nontrivial bound as soon as ¢ < n!
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Protocol for weak string erasure

@ To get bit commitment, it enough for to require ¢ to be at
most
n — clog®n — clognlog(1/e).
@ Since for ¢ = n we cannot have security, this is essentially
optimal.
@ Previous best: security for ¢ ~ 2n/3.

@ Also works for any other model in which we get a nontrivial
bound on H,(A"|B), (noisy memory model, etc).
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Thank you

Thank you!
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