Bounding the uncertainty of constrained adversaries

Frédéric Dupuis Aarhus University

Joint work with
Omar Fawzi (ETH Zürich)
Stephanie Wehner (National University of Singapore)

arXiv:1305.1316

CEQIP 2014, 6 June 2014

Multiparty computation

Examples: online voting, auctions, etc...

Multiparty computation

We want to implement this with no trusted third party:

Oblivious transfer

Bit commitment

$$b \in \{0,1\} \longrightarrow \text{BC} \longrightarrow \text{committed}$$

$$\vdots$$

$$\text{open} \longrightarrow \text{BC} \longrightarrow b$$

OT and BC

- Classically, BC is not enough for multiparty computation
- There exists a quantum protocol for OT using BC [Crépeau 1994]
- However: BC is impossible from scratch

Restricted adversaries

To make a BC protocol, we need to make assumptions:

- Computational assumptions: assume there is no efficient algorithm for solving certain problems
- Physical assumptions: assume an adversary is physically restricted in some way
 - Limited memory
 - Limited quantum memory
 - Noisy (quantum) memory
 - Noisy channel
 - Limited interaction between quantum systems
 - ...

Making use of the restrictions

- Goal of this talk: show how to make use of physical restrictions to construct protocols.
- Key idea: physical restriction ⇒ bound on adversary's uncertainty about something

Measuring uncertainty

- How can we measure uncertainty?
- Entropy: H(X), uncertainty about a random variable X:

$$H(X) = -\sum_{x} p_x \log p_x$$

- Why?
 - Compression: given n instances of X, we can compress it into $\approx nH(X)$ bits
 - Randomness extraction: given n instances of X, we can extract $\approx nH(X)$ bits of uniform randomness
 - What about just one instance of X? H(X) is not good enough.

Measuring uncertainty

Why is H(X) not good enough? Consider this distribution:

Can't really compress, can't extract more than 1 bit of randomness. But:

$$H(X) = -\frac{1}{2}\log(2) - \frac{1}{2}\log(n)$$

Frédéric Dupuis CEQIP 2014 6 June 2014 10 / 40

Measuring uncertainty

If we cannot use ${\cal H}(X)$ to measure uncertainty, what should we use?

- Compression and randomness extraction require two different measures
- Compression: $H_{\text{max}}(X)$ (won't talk about this)
- Randomness extraction: $H_{\min}(X)$

Min-entropy

 $H_{\min}(X) = -\log(\text{probability of guessing } X).$

Min-entropy: classical-quantum

What if we have quantum information about *X*?

- Alice has x with probability p_x
- Bob has ρ^x whenever Alice has x
- Represent this with the CQ state $\rho_{XB} := \sum_x p_x |x\rangle\!\langle x|_X \otimes \rho_B^x$.
- Bob tries to guess x by measuring his state

$$H_{\min}(X|B)_{\rho} := -\log(\text{probability of guessing } X).$$

Min-entropy: classical-quantum

$$H_{\min}(A|B)_{\rho} := -\log d_X F(\Phi, \mathcal{M}(\rho))^2$$

Min-entropy: classical-quantum

Some properties of the min-entropy:

- Between 0 and $\log d$ (follows from the fact that the guessing probability must be between 1/d and 1)
- Can guess with probability 1: $H_{\min} = 0$
- Can't do better than 1/d: $H_{\min} = \log d$

Min-entropy: fully quantum

What if X is now quantum as well?

$$H_{\min}(A|B)_{\rho} := -\log d_A F(\Phi, \mathcal{D}(\rho))^2$$

Min-entropy: fully quantum

- In this case, the min-entropy can be negative!
- Example: maximally entangled state: $|\Phi\rangle = \sum_{x=1}^d |x\rangle_A \otimes |x\rangle_{A'}$ has a min-entropy of $H_{\min}(A|A')_{\Phi} = -\log d$.
- In general, $-\log d \leqslant H_{\min} \leqslant \log d$

Privacy amplification

- We have X, adversary has ρ_B^x , we somehow know that $H_{\min}(X|B) \geqslant k$.
- What can we do?
- We can extract $\approx k$ bits of uniform, independent randomness
- How? Apply a randomly chosen function $F(\cdot)$ to X

What we want at the output:

$$\operatorname{Unif}_{SY} \otimes \rho_B$$

18 / 40

Privacy amplification

Theorem (Privacy amplification)

$$\|\sigma_{SYB} - \text{Unif}_{SY} \otimes \rho_B\|_1 \leqslant \sqrt{2^{\ell - H_{\min}(X|B)_{\rho}}}$$

 \Rightarrow Just need ℓ to be a bit smaller than $H_{\min}(X|B)$.

How can we get min-entropy bounds in protocols of interest?

- We want to be able to make statements such as $H_{\min}(A|E) \geqslant k$ where E is an adversary's information about some A of interest.
- Often, it is easy to make a statement about an intermediary step, but we want the bound to "survive" the rest of the protocol

For example:

Very easy to bound the min-entropy:

$$H_{\min}(A|E) \geqslant -q$$

for any ρ .

What if the honest parties then do something to *A*?

Some examples:

- Measure in random basis
- Sample random subsets of qubits
- Etc...

We want to be able to say

$$H_{\min}(B|E) \geqslant g(H_{\min}(A|E))$$

for an appropriate function g that will depend on \mathcal{M} .

A small caveat

- ullet H_2 vs H_{\min}
- H_2 is "morally" equivalent to H_{\min} (for example, privacy amplification still works with a bound on H_2 only)
- Can convert between the two:
 - For CQ states: $H_{\min}(X|B) \leqslant H_2(X|B) \leqslant 2H_{\min}(X|B)$
 - For general states: $H_{\min}(X|B) \leq H_2(X|B)$, and $H_2(X|B) + \log d \leq 2(H_{\min}(X|B) + \log d)$.

A general bound

Theorem

$$\frac{1}{n}H_2(C|E) \gtrsim g\left(\frac{1}{n}H_2(A_1,\ldots,A_n|E)\right)$$

Sampling

Theorem

$$\frac{1}{k}H_2(A_S|ES) \gtrsim R\left(\frac{1}{n}H_2(A_1,\dots,A_n|E)\right)$$

Sampling: the CQ case

Theorem

$$\frac{1}{k}H_2(X_S|ES)_{\rho} \gtrsim C\left(\frac{1}{n}H_2(X_1,\ldots,X_n|E)\right).$$

Sampling: CQ and fully quantum

Measuring in a random BB84 basis

Theorem

$$\frac{1}{n}H_2(X^n|E\Theta^n)_{\sigma} \gtrsim \gamma\left(\frac{1}{n}H_2(A_1,\ldots,A_n|E)\right).$$

Frédéric Dupuis CEQIP 2014 6 June 2014 29 / 40

Bounded quantum storage model (BQSM)

At some point in the protocol, all parties are assumed to have at most q qubits of storage (but unlimited classical storage).

Alice	Bob
	→
· Memoi	y bound applies
	→ ————————————————————————————————————

Weak string erasure

Bit commitment can in turn be reduced to *weak string erasure* [König, Wehner, Wullschleger 2012]:

For security, we want:

- \mathcal{I} is distributed uniformly over [n] and is independent of anything Alice has.
- If Bob is dishonest, then $\frac{1}{n}H_{\min}(X^n|B)_{\sigma} \ge \lambda$, where σ_{X^nB} is the state at the end of the protocol.

Weak string erasure

Given a protocol for weak string erasure with

$$\lambda \geqslant \Omega\left(\frac{\log n}{n}\right),\,$$

we can do bit commitment.

Does this protocol satisfy the security definition?

- \mathcal{I} uniform and independent. Yes: \mathcal{I} only depends on the XOR of θ^n and $\tilde{\theta}^n \Rightarrow$ Alice has no control over it.
- We need that, for a dishonest Bob, $\frac{1}{n}H_{\min}(X^n|B)_{\sigma} \geqslant \lambda$.

We need our theorem to guarantee the second point.

Protocol for WSE: dishonest Bob

Recall our theorem on measuring in random BB84 bases:

$$\frac{1}{n}H_2(X^n|B_QB_C\Theta^n) \gtrsim \gamma\left(\frac{1}{n}H_2(A^n|B_QB_C)\right)$$

But we know that

$$H_2(A^n|B_QB_C) \geqslant -q$$

because of the memory bound.

$$\frac{1}{n}H_2(A^n|B_QB_C)\geqslant \frac{-q}{n}$$

We get a nontrivial bound as soon as q < n!

 To get bit commitment, it enough for to require q to be at most

$$n - c \log^2 n - c \log n \log(1/\varepsilon)$$
.

- Since for q = n we cannot have security, this is essentially optimal.
- Previous best: security for $q \approx 2n/3$.
- Also works for any other model in which we get a nontrivial bound on $H_2(A^n|B)_\rho$ (noisy memory model, etc).

Thank you!

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

