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Qubit

Node

Bi-partite entangled state

• qubits (two-level quantum systems) (spin 1/2, e.g. photon
polarization)

• Multiple qubits and classical resources at each node (vertex)
• links (edges): bi-partite entangled (pure/mixed) two-qubit states.
• Goal: entangle pairs of qubits between distant nodes
• Quantum operations local: within nodes. Classical can be global.

Local Operations and Classical Communication LOCC



Technical motivation: Generalize one-dimensional networks

• Quantum Information: Entanglement is a resource for tasks:
teleportation, key distribution, fault tolerant computation

• Creating entanglement requires local interaction. Noise
increases with distance. Depolarization. Absorption. Can’t
distribute entanglement over long distance in a single stage!

• Long range entanglement via Network of stations or nodes that
store and purify a state.

• Generalization of quantum repeater schemes.
Dür, Briegel, Cirac, Zoller, PRA 1999

• Nodes share partially entangled states of qubits
• Nodes(stations)/channels, Vertices/edges, Sites/bonds
• Quantum operations probabilistic
• Large number of random components⇒ Complex

Networks, Percolation, Phase transition



Goal of Entanglement Percolation

• Given a network with a specified amount of quantum
and classical resources, and a specific long range
entanglement task, design the optimal protocol to
acheive the task.

• E.g. Optimal: Smallest amount of resources
(entanglement) per link that acheives task. Or protocol
that acheives task with highest probability for a given
amount of resources.

• E.g. Topology of lattice(network) may be an external
constraint.

• E.g. Task: entangle fixed widely separated nodes A
and B.



Entanglement: Two entangled qubits

Two entangled qubits: four-dimensional Hilbert space.

Bi-partite pure state

All such states LOCC equivalent to unique state in Schmidt
basis.

|α〉 =
√
α0 |00〉+

√
α1 |11〉

α0 > α1 α0 + α1 = 1 α1 ∈ [0, 1/2]

Pure, partially entangled, bipartite state

α1 = 0: no entanglement, α1 = 1/2: max. entanglement



Bell State: Singlet Conversion

Partially Entangled: |α〉 =
√
α0 |00〉+

√
α1 |11〉

Local operations (and classical communication): qubits not
allowed to interact

Maximally Entangled: |Ψ〉 =
1√
2
|00〉+

1√
2
|11〉

Singlet, Bell State, Maximally Entangled State Singlet
Conversion Probability p = 2α1, for α0 > α1

Otherwise: product state (failure)



Entanglement Swapping

|α〉|α〉

We can entangle the two outermost qubits, using only local
operations and classical communication: i.e. without
interacting outermost qubits. Using entanglement
swapping. Get Bell state with same probability as in singlet
conversion p = 2α1 ! (product state otherwise) Note: if
α1 = 1/2, then p = 1. Using only local operations and
classical communication.



Entanglement Swapping

|α〉|α〉

|Ψ〉

Entanglement Swapping. Get Bell state with same
probability as in singlet conversion p = 2α1 ! (product
state otherwise) Note: if α1 = 1/2, then p = 1. Using only
local operations and classical communication.



Quantum Network

Concrete: Square lattice. Each bond is an entangled pair
with amount of entanglement α1.



Quantum Network

How to treat a network larger than two pairs. Most naive
method: repeated swapping⇒ exponential decay. Next
most naive: borrow ideas from one-dimensional quantum
repeaters.

1 Attempt to put each pair in a Bell state. Here: Singlet
conversion with probability of success p = 2α1.

2 Entanglement swappings between pairs of these Bell
states. Result: New Bell state between outermost
qubits, one from each of the pairs.

3 Repeat swappings, entangling ever more distant
qubits.



“Classical” Entanglement Percolation

A

B

Entangle nodes A and B



“Classical” Entanglement Percolation
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Singlet conversion fails.
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“Classical” Entanglement Percolation

A

B

Done!

Entanglement swapping succeeds, p = 2α1 = 1.



Big Network: α1 = 0.175 p = 0.35

All bonds identically prepared in state |α〉.



Big Network: α1 = 0.175 p = 0.35

Singlet conversions everywhere.. . . Partition into clusters.



Big Network: α1 = 0.175 p = 0.35

Bond percolation on square lattice. Infinite cluster iff p > pc = 0.5.



Percolation theory

• Bonds are open (present) with probability p; or else
closed (absent). p is called the bond density.

• For large lattices there is a threshold value of the bond
density pc. For p > pc there is a single cluster that
spans the whole lattice. pc depends on the structure of
the lattice.

• In order for A and B to be connected if they are very
far apart,

1 Must have p > pc
2 Both A and B must be in the huge cluster

• Let θ(p) = Prob(A is in huge cluster)
• A and B are connected with Prob = θ2(p)



Fraction of Bonds in largest cluster
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Can we do better than simply swapping along a chain ?

Yes. Precondition the lattice with other quantum operations.

Change local structure⇒ Different lattice⇒ Different
global properties: Different percolation threshold.

Then swap along chain.
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Kagome lattice

Easiest example.
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Kagome lattice

Entanglement swapping to create vertical bonds.



Kagome lattice

Vertical bonds are Bell pairs.



Kagome lattice

Vertical bonds are Bell pairs.



Kagome lattice

Then singlet conversion on horizontal bonds.



Convert kagome lattice to square lattice

pc ≈ 0.52 Kagome pc = 0.5 Square lattice

Acı́n, Cirac, Lewenstein, Nature Phys (2007)
Perseguers, Cirac, Acı́n, Lewenstein, Wehr, PRA (2008)
JL, Wehr, Lewenstein, PRA (2009)



Convert bowtie lattice to square and triangular

pc ≈ 0.40 Bowtie pc ≈ 0.35 Triangular

JL, J. Wehr, M. Lewenstein, PRA (2009)



Characterize Protocols

In all known effective preconditioning protocols:
• Local connectivity non-decreasing: Coordination

number increases or remains the same.
• Global connectivity non-decreasing: Classical

percolation threshold decreases.

Unsurprising, but, must this always be the case?

No. Counter-example: Look at swapping more closely.
Only perform partial entanglement swapping.
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Entanglement Swapping

Entanglement swapping procedure.

1 Measurement projecting two center qubits onto Bell
basis.

2 Unitary on end qubit based on result of measurement,
leaving two distinct (pairs of) states.

3 One state is partially entangled: perform SCP on it.
4 Other state is already maximally entangled.
5 Averaging over these two possibilities gives p = 2α1.



Entanglement Swapping
|α〉|α〉

|Ψ〉

|β〉



Partial swapping and distillation

Do partial swapping (only projection) on selected bonds of
triangular lattice. This leaves pairs of parallel bonds in
honeycomb (hexagonal) lattice, which are then distilled.
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Partial swapping and distillation
Majorization says we can distill a singlet from the double
bond pair with probability

p = min

{
1, 2

(
1− α3

0

α2
0 + α2

1

)}
The real root of α3

0 − α2
0 + α0 − 1/2 = 0 is α∗0 ≈ 0.647798.

Thus, if α0 < 0.647 then each double bond can be
converted to a singlet with probability 1.

There is a range of initial entanglement for which
long-range entanglement is acheived with probability 1.

And this can be improved by optimizing the chosen Bell
basis instead of taking the usual one for swapping.
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Role of local and global geometry in entanglement percolation, JL, PRA (2014)



Other work
• Multipartite (GHZ) states⇒ percolation non-planar graphs

Perseguers, Cavalcanti, JL, Lewenstein, and Acı́n, PRA (2010)

• Mixed states of rank ≤ 3 Broadfoot, Dorner, Jaksch, PRA (2010),
EPL (2009)

• Q-star transformation on complex networks. increase

entanglement distance. Cuquet,
Calsamiglia, PRL (2009), PRA (2011)

• Mixed states full rank, complex network. JL, Perseguers,
Lewenstein, Acı́n, QIC (2012)

• Review: Perseguers, JL, Cavalcanti, Lewenstein, Acı́n, Rep.
Prog. Phys. 76 (2013)



Other things . . .

• Geometry, topology, etc. often determines optimal
protocol.

• Constraint on geometry of transformed lattice?
• Is there a lower bound on local entanglement density

in 2-d ?
• Dynamics ?
• Coupled lattices ?
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