Geometry in Entanglement Percolation

John Lapeyre

ICFO, Barcelona, Spain

June 8, 2014 CEQIP, Znojmo, Czech Republic

Institut de Ciències Fotòniques

- *qubits* (two-level quantum systems) (spin 1/2, *e.g.* photon polarization)
- Multiple qubits and classical resources at each node (vertex)
- *links* (edges): bi-partite entangled (pure/mixed) two-qubit states.
- Goal: entangle pairs of qubits between distant nodes
- Quantum operations local: within nodes. Classical can be global.
 Local Operations and Classical Communication LOCC

Technical motivation: Generalize one-dimensional networks

- Quantum Information: Entanglement is a resource for tasks: teleportation, key distribution, fault tolerant computation
 - Creating entanglement requires local interaction. Noise increases with distance. Depolarization. Absorption. Can't distribute entanglement over long distance in a single stage!
- Long range entanglement via Network of stations or nodes that store and purify a state.
 - Generalization of quantum repeater schemes. Dür, Briegel, Cirac, Zoller, PRA 1999
 - Nodes share partially entangled states of qubits
 - Nodes(stations)/channels, Vertices/edges, Sites/bonds
 - Quantum operations probabilistic
 - Large number of random components ⇒ Complex Networks, Percolation, Phase transition

Goal of Entanglement Percolation

- Given a network with a specified amount of quantum and classical resources, and a specific long range entanglement task, design the optimal protocol to acheive the task.
- E.g. Optimal: Smallest amount of resources (entanglement) per link that acheives task. Or protocol that acheives task with highest probability for a given amount of resources.
- E.g. Topology of lattice(network) may be an external constraint.
- E.g. Task: entangle fixed widely separated nodes A and B.

Entanglement: Two entangled qubits

Two entangled qubits: four-dimensional Hilbert space.

Bi-partite pure state

All such states LOCC equivalent to unique state in Schmidt basis.

$$\begin{aligned} |\alpha\rangle &= \sqrt{\alpha_0} |00\rangle + \sqrt{\alpha_1} |11\rangle \\ \alpha_0 &> \alpha_1 \qquad \alpha_0 + \alpha_1 = 1 \qquad \alpha_1 \in [0, 1/2] \\ \end{aligned}$$
Pure, partially entangled, bipartite state

 $\alpha_1 = 0$: no entanglement, $\alpha_1 = 1/2$: max. entanglement

Bell State: Singlet Conversion

Partially Entangled: $|\alpha\rangle = \sqrt{\alpha_0} |00\rangle + \sqrt{\alpha_1} |11\rangle$

Local operations (and classical communication): qubits not allowed to interact

Maximally Entangled:
$$|\Psi\rangle = \frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle$$

Singlet, Bell State, Maximally Entangled State Singlet Conversion Probability $p = 2\alpha_1$, for $\alpha_0 > \alpha_1$

Otherwise: product state (failure)

Entanglement Swapping

 $|\alpha\rangle$

We can entangle the two outermost qubits, using only local operations and classical communication: *i.e.* without interacting outermost qubits. Using entanglement swapping.

Entanglement Swapping. Get Bell state with same probability as in singlet conversion $p = 2\alpha_1$! (product state otherwise) Note: if $\alpha_1 = 1/2$, then p = 1.

Concrete: Square lattice. Each bond is an entangled pair with amount of entanglement α_1 .

Quantum Network

- How to treat a network larger than two pairs. Most naive method: repeated swapping \Rightarrow exponential decay. Next most naive: borrow ideas from one-dimensional quantum repeaters.
 - Attempt to put each pair in a Bell state. Here: Singlet conversion with probability of success $p = 2\alpha_1$.
 - Entanglement swappings between pairs of these Bell states. Result: New Bell state between outermost qubits, one from each of the pairs.
 - Repeat swappings, entangling ever more distant qubits.

Singlet conversion succeeds.

Singlet conversion succeeds.

Singlet conversion succeeds.

Singlet conversion succeeds.

Singlet conversion succeeds.

All bonds identically prepared in state $|\alpha\rangle$.

Singlet conversions everywhere.... Partition into clusters.

Bond percolation on square lattice. Infinite cluster iff $p > p_c = 0.5$.

Percolation theory

- Bonds are *open* (present) with probability *p*; or else *closed* (absent). *p* is called the bond density.
- For large lattices there is a threshold value of the bond density p_c . For $p > p_c$ there is a single cluster that spans the whole lattice. p_c depends on the structure of the lattice.
- In order for A and B to be connected if they are very far apart,
 - 1 Must have $p > p_c$
 - 2 Both A and B must be in the huge cluster
- Let $\theta(p) = \operatorname{Prob}(A \text{ is in huge cluster})$
- A and B are connected with $Prob = \theta^2(p)$

Fraction of Bonds in largest cluster $5 \cdot 10^8$ bonds 0.90.80.70.6 $\theta(p$ 0.50.40.30.20.10 $p_{c_{0.6}}$ $p_{c_{0.6}}$ 0.20.81 O

Can we do better than simply swapping along a chain ?

Can we do better than simply swapping along a chain ?

Yes. Precondition the lattice with other quantum operations.

Change local structure \Rightarrow Different lattice \Rightarrow Different global properties: Different percolation threshold.

Then swap along chain.

Easiest example.

Easiest example.

Entanglement swapping to create vertical bonds.

Vertical bonds are Bell pairs.

Vertical bonds are Bell pairs.

Then singlet conversion on horizontal bonds.

Convert kagome lattice to square lattice

Acín, Cirac, Lewenstein, Nature Phys (2007) Perseguers, Cirac, Acín, Lewenstein, Wehr, PRA (2008) JL, Wehr, Lewenstein, PRA (2009)

Convert bowtie lattice to square and triangular

JL, J. Wehr, M. Lewenstein, PRA (2009)

Characterize Protocols

In all known effective preconditioning protocols:

- Local connectivity non-decreasing: Coordination number increases or remains the same.
- Global connectivity non-decreasing: Classical percolation threshold decreases.

Characterize Protocols

In all known effective preconditioning protocols:

- Local connectivity non-decreasing: Coordination number increases or remains the same.
- Global connectivity non-decreasing: Classical percolation threshold decreases.

Unsurprising, but, must this always be the case?

Characterize Protocols

In all known effective preconditioning protocols:

- Local connectivity non-decreasing: Coordination number increases or remains the same.
- Global connectivity non-decreasing: Classical percolation threshold decreases.

Unsurprising, but, must this always be the case?

No. Counter-example: Look at swapping more closely. Only perform partial entanglement swapping.

Entanglement Swapping

Entanglement swapping procedure.

- Measurement projecting two center qubits onto Bell basis.
- Unitary on end qubit based on result of measurement, leaving two distinct (pairs of) states.
- **3** One state is partially entangled: perform SCP on it.
- Other state is already maximally entangled.
- **6** Averaging over these two possibilities gives $p = 2\alpha_1$.

Do partial swapping (only projection) on selected bonds of triangular lattice. This leaves pairs of parallel bonds in honeycomb (hexagonal) lattice, which are then distilled.

Majorization says we can distill a singlet from the double bond pair with probability

$$p = \min\left\{1, 2\left(1 - \frac{\alpha_0^3}{\alpha_0^2 + \alpha_1^2}\right)\right\}$$

The real root of $\alpha_0^3 - \alpha_0^2 + \alpha_0 - 1/2 = 0$ is $\alpha_0^* \approx 0.647798$. Thus, if $\alpha_0 < 0.647$ then each double bond can be converted to a singlet with probability 1.

Majorization says we can distill a singlet from the double bond pair with probability

$$p = \min\left\{1, 2\left(1 - \frac{\alpha_0^3}{\alpha_0^2 + \alpha_1^2}\right)\right\}$$

- The real root of $\alpha_0^3 \alpha_0^2 + \alpha_0 1/2 = 0$ is $\alpha_0^* \approx 0.647798$. Thus, if $\alpha_0 < 0.647$ then each double bond can be converted to a singlet with probability 1.
- There is a range of initial entanglement for which long-range entanglement is acheived with probability 1.

Majorization says we can distill a singlet from the double bond pair with probability

$$p = \min\left\{1, 2\left(1 - \frac{\alpha_0^3}{\alpha_0^2 + \alpha_1^2}\right)\right\}$$

The real root of $\alpha_0^3 - \alpha_0^2 + \alpha_0 - 1/2 = 0$ is $\alpha_0^* \approx 0.647798$. Thus, if $\alpha_0 < 0.647$ then each double bond can be converted to a singlet with probability 1.

- There is a range of initial entanglement for which long-range entanglement is acheived with probability 1.
- And this can be improved by optimizing the chosen Bell basis instead of taking the usual one for swapping.

Role of local and global geometry in entanglement percolation, JL, PRA (2014)

Other work

- Multipartite (GHZ) states ⇒ percolation non-planar graphs Perseguers, Cavalcanti, JL, Lewenstein, and Acín, PRA (2010)
- Mixed states of rank ≤ 3 Broadfoot, Dorner, Jaksch, PRA (2010), EPL (2009)
- Q-star transformation on complex networks. increase

entanglement distance. 🍼 🔌 Cuquet, Calsamiglia, PRL (2009), PRA (2011)

- Mixed states full rank, complex network. JL, Perseguers, Lewenstein, Acín, QIC (2012)
- Review: Perseguers, JL, Cavalcanti, Lewenstein, Acín, Rep. Prog. Phys. 76 (2013)

Other things ...

- Geometry, topology, etc. often determines optimal protocol.
- Constraint on geometry of transformed lattice?
- Is there a lower bound on local entanglement density in 2-d ?
- Dynamics ?
- Coupled lattices ?