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Different choices of ¢ lead to different capacities!



Definition (MH, Reeb, Wolf 2013)

The €—quantum subdivision capacity of tL is then defined as the supremum
of asymptotical achievable rates

Q¢ (tL) :=sup{R€R": R = limsup i}

v—oo My

such that the asymptotic communication error vanishes

k

id?"” — ’DOH (C/ o (ef£)®mu) o0&

=1

inf

—0 asv — oo.
k,E,D,Cy,...,Ck

o

Infimum goes over:
e k € N number of subdivisions
o £:MP™ — MI™ and D : ME™ — MY™ quantum channels
e C; € € channels from the subset €
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Infinitely divisible coding maps

1. Example: Let € be the set of infinitely divisible quantum channels
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e ~~ Denote this set by ID.
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Theorem (MH, Reeb, Wolf 2013)

For any noise Liouvillian £ : My — My and any t € RT we have

Qb (tﬁ) = |og(d)
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But the channel D o £ is not necessarily infinitely divisible!



Proof of Qip (tL) = log(d)

Implement intermediate coding via infinitely divisible channels



Proof of Qip (tL) = log(d)

Implement intermediate coding via infinitely divisible channels

Almost pure ancillas from the infinitely divisible channel:

pr—= (1—e ™)tr(p)|0) (0] +e "p, forlarge rater



Proof of Qip (tL) = log(d)

Implement intermediate coding via unitaries and pure ancillas

Almost pure ancillas from the infinitely divisible channel:

pr—= (1—e ™)tr(p)|0) (0] +e "p, forlarge rater



Proof of Qip (tL) = log(d)

Implement intermediate coding via unitaries and pure ancillas

Almost pure ancillas from the infinitely divisible channel:

prr (L—e ")tr(p)|0) (0] + e p, forlargerater

]

l
FHAR

]

em @

3
®
3

=~
o
=
Ay
=
_\1
ol

em
T
Kk



Proof of Qip (tL) = log(d)

Implement intermediate coding via unitaries and pure ancillas

Almost pure ancillas from the infinitely divisible channel:

p—=(1—e ™)tr(p)]0) (0] + e "p, forlarge rater

ue ue ue ue

i
i
E

=~
b
3
o
=~
b
3
o

IR

x\>é

ol
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Implement intermediate coding via unitaries and pure ancillas

Almost pure ancillas from the infinitely divisible channel:
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How many pure ancillas are sufficient?
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Decoupling approach to the quantum capacity:
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Theorem (MH, Reeb, Wolf 2013)

Let L : Mg — My denote a Liouvillian with fixed point po € ©4. Then we have

Icoh (T/k)

log(d)— 1< (T, /4 )
log(d)—S(po)

> 0.

Qun (tL£) > max
“ \1+5k

ek (T¢/x) = const. for k ~ t. ~ Lower bound ~ 1
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Lower bounds for unital Liouvillians

Previous scheme fails if fixed point is maximally mixed.
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Us| |

3 C, 'F;m“

Maximal entropy of ancilla states never reached in finite time!

Theorem (MH, Reeb, Wolf 2013)

Let L : 9y — My denote a unital Liouvillian. Then we have

Qun (tL£) > 0.

~~ Qun is always strictly larger than zero.
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Is Qy (tL) also log(d)?

Answer: Not for certain unital Liouvillians!

Consider Liouvillians such that:
i Im —2at 1m
-m) < -m
o((«)" w1 gz) <0 (o1 32) ()
< me **"log(d)

~ Logarithmic Sobolev inequality for some « independent of m.

For any noise Liouvillian £ : My — My fulfilling (x) and t € RT we have

Qu (tL) < e ***log(d).
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Logarithmic Sobolev inequalities

tL ®m ]]-m —2at ]]-m
M) < -_m
D((e ) ) dm)_e D(pn dm)
Which Liouvillians £ fulfill (x) with a constant « independent of m?

e Depolarizing Liouvillian: £ (p) := X (tr(p) 3 — p) ~ a =
~+[Aharonov, et al.]

N[>

e Unital, detailed-balanced Liouvillians with unique fixed point:

A
* 7 Jog(d®) + 11

~~ [Bodineau and Zegarlinski], [Temme, et al.]

Shows that Qy (t£) < e **'log(d) for any unital, detailed-balanced
Liouvillian with unique fixed point.
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For general depolarizing Liouvillians:

L* (p) :=tr(p)po—p

Theorem (MH, Reeb, Wolf 2013)

For the noise Liouvillian £ : 9y — My and t € RT we have

Qq (tl:dep) < log(d) — (1 —e™") S(po)



Thank you for your attention.



Thank you for your attention.

For more information see: arXiv:1310.2856



	Infinitely divisible coding maps
	Unitary coding maps

