Device Independent Randomness Extraction for Arbitrarily Weak Min-Entropy Source

Jan Bouda, Marcin Pawłowski, Matej Pivoluska, Martin Plesch

6.6.2014

Outline

- Motivation and Related Work.
- Ingredients.
- Our Protocol.

Importance of Randomness

Randomness is useful in:

- Gambling.
- Simulation and Computation.
- Cryptography.

Importance of Randomness

Randomness is useful in:

- Gambling.
- Simulation and Computation.
- Cryptography.

Impact of imperfect randomness can be devastating:

- Attacks on RSA [Lenstra et. al. (2012)]
- Attacks on QKD[Bouda et. al. (2012), Huber and Pawłowski (2013)]

- Pseudorandomness
- Classical Hardware
- Quantum Hardware

- Pseudorandomness
- Classical Hardware
- Quantum Hardware

- Pseudorandomness
- Classical Hardware
- Quantum Hardware

4 / 20

- Pseudorandomness
- Classical Hardware
- Quantum Hardware
- Statistical tests vs.
 Unpredictability
- Official certification

Device Independent Approach

- Challenges have to be random.
- Similarity to randomness extraction.

Randomness Extraction

 Randomness extraction is a procedure to transform imperfect randomness into (close to) perfect randomness.

Randomness Extraction

 Randomness extraction is a procedure to transform imperfect randomness into (close to) perfect randomness.

Classical Extraction

Randomness Extraction

 Randomness extraction is a procedure to transform imperfect randomness into (close to) perfect randomness.

6 / 20

Related work

Santha-Vazirani sources

- Colbeck and Renner (2012).
- Gallego et. al. (2013).
- Brandão et. al. (2013).

Min-Entropy sources

- Chung, Shi, Wu (2014).
- This presentation.

Quantum Device - GHZ test

8 / 20

Quantum Device - GHZ test

- Input $xyz \in \{111, 001, 010, 100\}$.
- Test if $a \oplus b \oplus c = x \cdot y \cdot z$.
- Classical strategies succeed with probability at most 3/4.
- Quantum strategy succeeds with probability 1 and produces perfect random bits.

GHZ devices - rigidity (MP bound)

- Let inputs into D_i be uniform.
- If D_i wins GHZ game with probability $p > f(\epsilon)$ then bias of a_m is at most ϵ .
- Function $f(\epsilon)$ obtained by SDP.

Weak Source of Randomness - Definition

Source of randomness $\{X_i\}_{i\in\mathbb{N}}$ is (n, k) block source if

- X_i is random variable with n bit output.
- It holds that

$$\forall x_1, \dots, x_{i-1} \in \{0, 1\}^n, \forall e \in \mathcal{I}(E),$$

 $H_{\infty}(X_i | X_{i-1} = x_{i-1}, \dots, X_1 = x_1, E = e) \ge k.$

• H_{∞} is min-entropy.

Weak Source of Randomness - Definition

Source of randomness $\{X_i\}_{i\in\mathbb{N}}$ is (n, k) block source if

- X_i is random variable with n bit output.
- It holds that

$$\forall x_1, \dots, x_{i-1} \in \{0, 1\}^n, \forall e \in \mathcal{I}(E),$$

 $H_{\infty}(X_i | X_{i-1} = x_{i-1}, \dots, X_1 = x_1, E = e) \ge k.$

• H_{∞} is min-entropy.

Notes:

- Classically cannot be extracted.
- For n = 1 Santha–Vazirani (SV) source is recovered.
- For n > 1 cannot be transformed into SV source existing protocols do not work.

Set of Hashing Functions

- Let $h_i: \{0,1\}^n \mapsto \{0,1\}^2$.
- Let $H = \{h_i\}_{i=1}^m$.
- For each subset S of $\{0,1\}^n$ of size 4 there exists h_i , such that $h_i(S) = \{00, 01, 10, 11\}.$
- There is a construction of H with size polynomial in n.

11 / 20

One Round of Protocol

- ① We obtain the (weakly) random n bit string r_i from an (n, 2) block source.
- ② Into each device D_i we input the 3 bit string inputs X_i , Y_i and Z_i derived from $h_i(r_i)$ and obtain the outputs A_i , B_i and C_i .
- ③ We verify whether for each device D_i the condition $Z_i \oplus Y_i \oplus Z_i = A_i \cdot B_i \cdot C_i$ holds. If this is not true, we abort the protocol.
- **4** We define the output bit of the protocol as $b_i = \bigoplus_{j=1}^m A_j$.

Protocol - Scheme

Single Round Analysis - The Flat Sources

• (n, 2) flat source – 4 elements of $\{0, 1\}^n$ with probability $\frac{1}{4}$, others with probability 0.

Single Round Analysis - The Flat Sources

• (n, 2) flat source – 4 elements of $\{0, 1\}^n$ with probability $\frac{1}{4}$, others with probability 0.

Single Round Analysis - The Non-Flat Sources

• Any (n, 2) distribution d can be expressed as a convex combination of at most $N = 2^n$ (n, 2) flat distributions d_i .

Single Round Analysis - The Non-Flat Sources II

Multiple Rounds

- Repeat the protocol ℓ times. Output $b = \bigoplus_{j=1}^{l} b_j$.
- If b has bias greater than ϵ , each of b_i has bias at least ϵ .
- To achieve bias ϵ adversary has to risk ℓ times success $f(\epsilon)^{\ell}$.
- For target parameters ϵ, δ set $\ell > \log \delta / \log f(\epsilon)$

Robustness - Imperfect Honest Devices

- \bullet Let us allow $\mu = \frac{1 f(\epsilon)}{2m}$ fraction of all the $m\ell$ devices to fail the test.
- ullet Then honest but faulty devices with failure probability $\mu/2$ pass the protocol with high probability.

Malicious Devices

- Adversary needs to cheat for devices with uniform input.
- By increasing number of rounds we can make sure that (a lot) less errors are allowed than the number of devices adversary needs to cheat.

Conclusion

- Protocol uses arbitrary block source.
- Protocol produces single bit biased at most ϵ with probability 1δ for arbitrary ϵ, δ .
- Number of devices used scales polynomially with the length of the block.

Conclusion

- Protocol uses arbitrary block source.
- Protocol produces single bit biased at most ϵ with probability $1-\delta$ for arbitrary ϵ, δ .
- Number of devices used scales polynomially with the length of the block.

THANK YOU!