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Shor´s algorithm (quantum part) 
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modular exponentiation 



Simulating quantum circuits classically 
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[14] Van den Nest. Quant. Inf. and Comp., 11(9-10):784–812, 2011. 
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Computationally Tractable (CT) states 

Definition[14]: A state is called computationally tractable (CT), if 
  (a) px=|<x|psi>|^2  can be sampled efficiently classically, and if 
  (b) <x|ps can be computed efficiently (polynomial in the bit size) 

 
CT states capture two key properties of several important families of 
simulable quantum states, such as  
• MPS with polynomial bond dimension,  
• states generated by poly-size Clifford circuits,  
• nearest-neighbor matchgate circuits,  
• bounded tree-width circuits,  
• normalizer circuits over finite Abelian groups (acting on coset states) 
• … 
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Useful lemmas on CT states 

CT states have the remarkable property, that overlaps CT states and 
expectation values of certain operators on CT states can be efficiently 
computed: 
 
 
 
 
 
 
 
Proof: by a sampling argument using a complex-valued Chernoff-bound 
 
Note, that this is exponentially more accurate than estimating the overlap of two 
explicitly given general state vectors by sampling. 
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Approximate sparseness 
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... 

all probabilities 
Ω(2-n) 

O(2n) 
probabilities non-zero 

 dense 
probabilities too  

small to be estimated 



Approximate sparseness 
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... 

O(2n/poly(n))  
probabilities non-zero 

all probabilities 
Ω(poly(n)/2n)  dense 

non-zero elements 
cannot be identified Shor‘s algorithm: Ω(N/log(N)) amplitudes non-zero. 



Approximate sparseness 
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... 

O(poly(n))  
probabilities non-zero 

all non-zero probabilities 
Ω(1/poly(n))  sparse!  

elements can be identified! 
probabilities can be estimated! 



 approx. sparse  

Approximate sparseness 
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... 

O(poly(n))  
probabilities non-zero  

and large 

noise  

still works with noise 



Main result 
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(Theorem is stated for case of amplitudes and 2-norm.  
 Analogous theorem is true for probabilities and 1-norm.) 



Simulating quantum circuits classically 
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Proof sketch (QFT case) 

Lemma (coefficients estimation): Given an approx.-sparse probability 
distribution over n bits, where all marginal distributions of the first m bits 
are efficiently sampleable. Then w.h.p. a list of the O(poly(n))-many bit 
strings with non-zero probability can be efficently computed and the 
probabilities can be efficiently estimated to O(poly(1/ε)) accuracy. 
 
Proof: by a binary search / branch-and-bound argument. 
 
The main theorem follows from the coefficient estimation lemma and 
the next lemma. 
 
Main theorem is a generalization of the Kushilevitz-Mansour algorithm 
or Goldreich-Levin theorem to quantum states.  
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Proof sketch (QFT case) 

Lemma (marginal distribution): The m-bit marginals of the probability 
distribution produced by the quantum circuit satisfying the assumptions 
of the main theorem are efficiently approximable. 
Proof sketch: 
 
Generalized Pauli operators: 

 
We want to estimate                                                                    on a CT state. 
 
Note: 
 
Therefore, P(y) is the 1-eigenspace of                                  , which can be 
obtained by the average: 
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Proof sketch (QFT case) 

Thus the marginal probability distribution of the first m qubits of the quantum 
circuit can be written as 
 
 
 
Using                                                     where                                    we find that 
 
 
 
 
 
But each term of the sum is additively approximable by the CT state lemma, 
thus the sum is  additively approximable as well and the lemma follows.  
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Consequences 

• The dense output distribution of Shor‘s algorithm (or its generali-
zations) is a necessary feature for the (conjectured) exponential 
speed-up over classical computers. 
 

• In order to extract meaningful information out of a dense super-
position, additional structure (e.g. group structure) must be present, 
such that O(poly(n)) samples suffice to efficiently identify the structure. 
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Thank you. 
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