

Simulating Quantum Circuits with Sparse Output Distributions

Martin Schwarz¹, Maarten Van den Nest²

¹Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, A-1090 Wien, Austria ²Max Planck Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany

Quant. Inf. Comp. (accepted), arXiv:1310.6749

Simulating quantum circuits classically

3

Computationally Tractable (CT) states

<u>Definition^[14]</u>: A state is called *computationally tractable (CT)*, if (a) $p_x = |\langle x | \psi \rangle|^2$ can be sampled efficiently classically, and if (b) $\langle x | \psi \rangle$ can be computed efficiently (polynomial in the bit size)

CT states capture two key properties of several important families of simulable quantum states, such as

- MPS with polynomial bond dimension,
- states generated by poly-size Clifford circuits,
- nearest-neighbor matchgate circuits,
- bounded tree-width circuits,
- normalizer circuits over finite Abelian groups (acting on coset states)

. . .

Useful lemmas on CT states

CT states have the remarkable property, that overlaps CT states and expectation values of certain operators on CT states can be efficiently computed:

Lemma 12 ([VdN11]). Let $|\psi\rangle$ and $|\varphi\rangle$ be CT *n*-qubit states and let A be an efficiently computable basis-preserving *n*-qubit operation. Then there exists a randomized classical algorithm with runtime $poly(n, 1/\varepsilon, \log \frac{1}{\delta})$ which outputs an approximation of $\langle \psi | A | \varphi \rangle$ with accuracy ε and success probability at least $1 - \delta$.

Lemma 13 ([VdN11]). Let $|\psi\rangle$ and $|\varphi\rangle$ be CT *n*-qubit states, let $|\xi\rangle$ and $|\chi\rangle$ be CT *k*-qubit states with $k \leq n$. Then there exists a randomized classical algorithm with runtime $poly(n, 1/\varepsilon, \log \frac{1}{\delta})$ which outputs an approximation of $\langle \varphi | [|\xi\rangle \langle \chi | \otimes \mathbb{1}] | \psi \rangle$ with accuracy ε and success probability at least $1 - \delta$.

Proof: by a sampling argument using a complex-valued Chernoff-bound

Note, that this is exponentially more accurate than estimating the overlap of two explicitly given general state vectors by sampling.

Approximate sparseness

still works with noise

Main result

Theorem. Consider a unitary *n*-qubit quantum circuit composed of two blocks $C = U_2 U_1$ with input state $|\psi_{in}\rangle$. Suppose that the following conditions are fulfilled: (a) the state $U_1 |\psi_{in}\rangle$ obtained after applying the first block is CT, (b1) the second block U_2 is the QFT modulo 2^n or its inverse, or (b2) the second block U_2 is a tensor product of unitaries $u_1 \otimes \cdots \otimes u_n$ (c) the final state $|\psi_{out}\rangle = C |\psi_{in}\rangle$ is promised to be $\sqrt{\varepsilon}$ -approximately *t*-sparse for some $\varepsilon \leq 1/6$ and some *t*.

Then there exists a randomized classical algorithm with runtime $poly(n, t, 1/\varepsilon, \log \frac{1}{\delta})$ which outputs (by means of listing all nonzero amplitudes) an *s*-sparse state $|\psi\rangle$ which, with probability at least 1 - δ , is $O(\sqrt{\varepsilon})$ -close to $|\psi_{out}\rangle$, where $s = O(t/\varepsilon)$.

(Theorem is stated for case of amplitudes and 2-norm. Analogous theorem is true for probabilities and 1-norm.)

Simulating quantum circuits classically

11

Proof sketch (QFT case)

Lemma (coefficients estimation): Given an approx.-sparse probability distribution over *n* bits, where *all marginal distributions* of the first *m* bits are efficiently sampleable. Then w.h.p. a list of the O(poly(n))-many bit strings with non-zero probability can be efficiently computed and the probabilities can be efficiently estimated to $O(poly(1/\varepsilon))$ accuracy.

Proof: by a binary search / branch-and-bound argument.

The main theorem follows from the coefficient estimation lemma and the next lemma.

Main theorem is a generalization of the **Kushilevitz-Mansour** algorithm or **Goldreich-Levin** theorem to quantum states.

Proof sketch (QFT case)

Lemma (marginal distribution): The *m*-bit marginals of the probability distribution produced by the quantum circuit satisfying the assumptions of the main theorem are efficiently approximable.

Proof sketch:

Generalized Pauli operators: $\begin{array}{ll}
X_d|x\rangle = |x+1\rangle & \mathcal{F}_d^{\dagger}Z_d\mathcal{F}_d = X_d \\
Z_d|x\rangle = e^{\frac{2\pi i}{d}x}|x\rangle & \mathcal{F}_dZ_d\mathcal{F}_d^{\dagger} = X_d^{\dagger} \\
\end{array}$ We want to estimate $|y_1 \cdots y_m\rangle \langle y_1 \cdots y_m| \otimes I \equiv P(y)$ on a CT state. Note: $\hat{x} \mod 2^m = \hat{y}$ iff $\alpha^{\hat{y}} Z^{2^{k-m}} |\hat{x}\rangle = |\hat{x}\rangle$ with $\alpha := e^{-\frac{2\pi i}{2^m}}$. Therefore, P(y) is the 1-eigenspace of $M := \alpha^{\hat{y}} Z^{2^{k-m}}$, which can be obtained by the average: $P(y) = \frac{1}{2^m} \sum_{u=0}^{2^{m-1}} M^u$.

Proof sketch (QFT case)

Thus the marginal probability distribution of the first m qubits of the quantum circuit can be written as

$$p(y) = \langle \operatorname{CT} | [\mathcal{F}^{\dagger} P(y) \mathcal{F}] \otimes I | \operatorname{CT} \rangle$$

Using $\mathcal{F}^{\dagger} P(y) \mathcal{F} = \frac{1}{2^m} \sum_{u=0}^{2^m - 1} N^u$ where $N := \alpha^{\hat{y}} X^{2^{k-m}}$ we find that
$$p(y_1 \cdots y_m) = \frac{1}{2^m} \sum_{u=0}^{2^m - 1} \langle \operatorname{CT} | N^u \otimes I | \operatorname{CT} \rangle$$

But each term of the sum is additively approximable by the CT state lemma, thus the sum is additively approximable as well and the lemma follows.

Consequences

- The dense output distribution of Shor's algorithm (or its generalizations) is a *necessary feature* for the (conjectured) exponential speed-up over classical computers.
- In order to extract meaningful information out of a dense superposition, additional structure (e.g. group structure) must be present, such that O(poly(n)) samples suffice to efficiently identify the structure.

Thank you.