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Deterministic vs probabilistic

Deterministic world Probabilistic world

e Non-orthogonal states cannot  Unambiguous state
be distinguished /cloned discrimination / cloning

of linearly independent states
(Duan-Guo 98)

e Coherent light cannot be e Noiseless amplifiers
amplified (Ralph-Lund 08)

e SQL for phase e HL for phase estimation/
estimation / reference frame reference frame alignment
alignment with multiple (Fiurdsek 06, Bagan et al 12,
copies Chiribella-Yang-Yao 13)




This talk

Ultimate limits and basic laws of probabilistic processes:

e Limits and benchmarks on probabilistic amplifiers

e Limits to the replication of quantum states

e Super-replication of states and gates




APPETIZER:

EXPLORING THE LIMITS
OF
PROBABILISTIC AMPLIFIERS




Amplitying coherent states of hght

Coherent state:
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No perfect amplification

The transformation |a) — |ga) Va € C
is not physically realizable.

For good reasons:

* it would violate Heisenberg’s uncertainty principle
* it would lead to faster-than-light communication
* it would violate the no-cloning theorem

How can we approximate amplification with a physical process
allowed by quantum mechanics?




Approximate
determimistic amplhification

Parametric amplifier

Cr (/0) — Ty [er(aTbT_ab) (/0 R |O> <O‘)6—r(aTbT_ab)]
N— — . —

two-mode squeezing ancillary mode in the
operator vacuum state

For the input |a)
the output is a thermal state displaced by
ga, g = coshr

Optimal for suitably chosen values of r
(Namiki PRA 201 |,
Chiribella and Xie PRL 201 3).




Noiseless probabilistic amplitiers

Ralph and Lund (2008) propose a probabilistic scheme
achieving almost perfect amplification.

N

Ouln) = OnpQl Oy~

n=0 g

ForlargeN:  Qn(j){a]) = |ga)({ga|

(while the probability drops exponentially)




Probabilistic amplifiers in the lab
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(Questions

e How do these experiments compare with amplification
strategies based on probabilistic estimation?
(i.e. what is the relation between amplification and
estimation inside the probabilistic world?)

e [s RLO8 the optimal probabilistic process for amplification?
Or is there an even better amplifier?




Modeling the source

To model the source of coherent states we assume a
Gaussian distribution:

p}\(a) & )\€_>\|O‘|2
with this choice the expected photon number is (n) = 1/

p) represents our prior information about the input:

A=0 = no information

A=00 = complete information




The best probabilistic amplifiers

When the prior information is larger than a critical value,
nearly perfect amplification becomes possible!
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critical behavior at the value )\]gmb =

Above the critical value,

the best probabilistic amplifier becomes non-Gaussian and is achieved
by RLO8 protocol (Chiribella & Xie PRL 2013)
Having a non-flat prior is essential.




The best estimation-based
amplifier

The best amplifier based on measurement and re-preparation is:

measurement: heterodyne POVM P de o

states re-prepared for outcome (X : 1 _Ig_ : oz>

~ i =
e FOPt =
Its fidelity is g\ e U

(Chiribella & Xie PRL 201 3)

Equal to the fidelity of the best deterministic protocol (!)
by Namiki, Koashi, Imoto, PRL 08




Application
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Copying data

Copying is a fundamental task,
with applications across the most diverse fields,
including cryptography, market and technology, biology and art.

In the quantum world, the no-cloning theorem forbids perfectl replication.
But what are the limits to approximate replication?




(Quantum replication:
basic defimtions

Replication process: transforms N perfect copies into M = M (N)
approximate copies:

a7 s eyl ” 6B M >N

Quality of the copies measured by the global fidelity:

2
Fn vy = / do p(6) |< 'e\%>®M(N)|

Reliable replication: lim Fy_, M(N) = 1
N — o0




Replication rates

Replication rate: 0N =~ const x N% ON =M(N)— N

e. g.linearrate « = 1

e




Replication capacity

Replication capacity of a set of states:

o = sup{a: «is an achievable replication rate}

Deterministic replication
For arbitrary qubit states:

For qubit states on the
equator of the Bloch sphere:

For arbitrary qudit states:




QUANTUM METROLOGY

BOUNDS ON
THE REPLICATION CAPACITY




Replicating clocks

Clock states: |wt> —— €_itH ‘¢> L&

Example: linearly polarized photons/preceding nuclear magnets

y) = cos(wt) |0) + sin(wt)|1)

V) +1H)




Standard quantum hmait

)&

Standard quantum limit (SQL):
For independently prepared clocks,
the error scales like the inverse of the number of clocks:

const
N

Var(t) ~




Heisenberg limit

..9/

(e—th e

With a suitable entangled state the variance scales as
const
N~

Heisenberg limit: 1//N 2 is the best scaling allowed by quantum mechanics

Var(t) ~




Ultimate hmits on the rephcation
capacity

Theorem (Chiribella-Yang-Yao, Nature Commun. 2013):
In finite dim, if a set of states contains a subset of clock states,
then the replication capacity is upper bounded as

o <1 for deterministic processes

a” < 2 for probabilistic processes

Corollary: deterministic processes can only produce a negligible
amount of replicas.

No physical process can reliably replicate quantum information
at a rate faster than quadratic.




ACHIEVING THE HEISENBERG

LIMIT




(Quadratic speedup 1n replhication

For quantum clock states

there exists a probabilistic copy machine that obtains fidelity

: N2\
Fn_py=1-0 |exp (—Constant X M)

The fidelity tends to 1 whenever M is of order smaller than N2

faster than any inverse polynomial.




Super-replication

For clock states, one can probabilistically embezzle from Nature
a number of extra-copies that is large compared to N

Super-replication: replication at rate ¢ > 1

Example: a probabilistic process can transform N = 100 linearly
polarized photons into 1000 copies with fidelity F=99.9%
The best deterministic process can only achieve F = 57%




Rephcating entanglement

Arbitrary maximally entangled states can be super-replicated
probabilistically ™ — 9

Py) = (UI)|P)




Universal super-replication?

Can we find a universal super-replicator?
a process that super-replicates arbitrary pure states?

No! No advantage in using probabilistic processes for the
replication of arbitrary pure states.

Replication of arbitrary pure states obeys the

standard quantum limit (replication rate <1)

T'i.’.l
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RATE V5 PROBABILITY:

THE TRADEOFF




Strong converse ol the metrology
bounds

¢ |
“l.

Unfortunately, nothing comes for free... CASINO SLOT

Super-replication comes with a curse:
small probability of success.

How small?

Theorem (Chiribella, Yang, Yao 2013)
Forrate a=1+¢ , € <1
the success probability must vanish compared to exp|— /N ]

Otherwise, the fidelity will go to zero.
For € > 1 the fidelity goes to zero (no matter what)
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Replicating unitary gates

Problem: build up a quantum network that
simulates M uses of a gate
by using it only N times.




Replicating phase shift gates

Diir, Sekataski, Skotiniotis (PRL 2015)
Deterministic super-replication of phase shift gates

For gates of the form [/, = e

a deterministic network can obtain replication capacity

oW — )

Is it possible to replicate arbitrary gates?




Universal super-replication

Theorem (Chiribella, Yang, Huang, PRL 2015)

For every finite-dimensional quantum system

there exists a deterministic, universal network

that achieves replication capacity a =7

for arbitrary unitary gates.

The quadratic replication rate is optimal:

every quantum network replicating gates at rate > 2
will necessarily have zero fidelity on most inputs.

No contradiction with the no-cloning theorem:
the gate U cannot be extracted deterministically from the

state |y ) = U |¢)




Super-generation of
maximally entangled states

Using an unknown unitary gate U for N times
one can generate deterministically M>N approximate
copies of the maximally entangled state

Py) = (U RI)|P)

with fidelity

FEIN - M) >1—2(M +1) exp

gen




CONCLUSIONS



Conclusions

e Fundamental limits to probabilistic amplification:
-optimality of RLO8 for Gaussian distributed CS
-probabilistic benchmarks

e Ultimate limits to the replication rates set by the limits of quantum
metrology:
SQL: rate <1 for deterministic processes (negligible extra-copies)
HL: rate <2 for probabilistic processes (quadratic speed-up)

e Breaking the SQL: Super-replication
embezzling from Nature a large number of nearly perfect copies.
Can be done for clock states and max ent states.

e Universal gate replication: simulates up to a quadratic number of
gate uses without violating the no-cloning theorem.
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Proof idea (qubit case)

e think of qubits as spin 1/2 particles

e for a system of K qubits, let P}K)

be the projector on the subspaces with quantum
number of the angular momentum less than J

e define the encoding channel

K K K g K ]
5§ )(,0) = P§ )pP§ Ty _(I®K—P§ )) p

e consider the fidelity between a generic state ‘\If>

and its encoded version 5§K) (|W)(W])




Proof 1idea, cont’d

e Theorem
If |W) is chosen uniformly at random,

then for every € > () one has

HK LT

Prob _Fé,K’ﬂ <1 — e_ < exp
: ; €

a random state of M qubits can be encoded
with little error into a subspace with angular momentum

at most v M ,
wherein the action of the M gates can be simulated

via the action of v M gates




