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Deterministic vs probabilistic

• Non-orthogonal states cannot   
    be distinguished/cloned

• Coherent light cannot be 
   amplified

• SQL for phase     
    estimation/reference frame 
    alignment with multiple 
    copies
...

• Unambiguous state 
   discrimination/cloning
   of linearly independent states
   (Duan-Guo 98)

• Noiseless amplifiers 
    (Ralph-Lund 08)

• HL for phase estimation/
reference frame alignment
   (Fiurásek 06, Bagan et al 12,
    Chiribella-Yang-Yao 13)
...

Deterministic world Probabilistic world



• Limits to the replication of quantum states

• Super-replication of states and gates

This talk

• Limits and benchmarks on probabilistic amplifiers

Ultimate limits and basic laws of probabilistic processes: 



APPETIZER:

EXPLORING THE LIMITS
OF

PROBABILISTIC AMPLIFIERS



Amplifying coherent states of light

Coherent state:
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Ideally we wish to transform        into                       (“amplifier gain”)|↵� |g��, g > 1



For good reasons:

• it would violate Heisenberg’s uncertainty principle
• it would lead to faster-than-light communication
• it would violate the no-cloning theorem

The transformation
is not physically realizable. 

|�⌅ � |g�⌅ ⇤� ⇥ C

How can we approximate amplification with a physical process 
allowed by quantum mechanics?

No perfect amplification



Parametric amplifier
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Let us first state the problem of finding the op-
timal amplifiers. The most general physical process
that can be used to amplify an unknown state |�⇧ =

e�|�|2/2⌦⇤
n=0 �

n/n!|n⇧ will be described by a quantum
channel (completely positive trace-preserving map) C.
The ideal target of the amplifier is to transform the input
state |�⇧ into the the output state |g�⇧, where g > 1 is
the desired amplification gain. The success of the ampli-
fier on a particular input can be measured by the fidelity
F� := ⌅g�|C(|�⇧⌅�|)|g�⇧, namely the probability that
the output state passes a test set up by a verifier who
knows �. If all coherent states |�⇧ were equally likely,
then the best amplifier would be the one that maximizes
the worst-case fidelity Fg,wc = inf�⌅C Fg,�. In this sce-
nario, one can easily show that the maximum fidelity is
Fmax
g,wc = 1/g2 and that is achieved by two-mode squeezer,

given by the quantum channel

Cr(⇧) = TrB [e
r(a†b†�ab)(⇧⇥ |0⇧⌅0|)e�r(a†b†�ab)], (1)

where r is the squeezing parameter, a and b are the anni-
hilation operators of the input mode and of an ancillary
mode, respectively, TrB denotes the partial trace over
the Hilbert space of the ancillary mode, and |0⇧ is the
vacuum state. Precisely, the optimal value of the squeez-
ing parameter is r = cosh�1 g. However, the assumption
that all coherent states are equally likely is highly un-
physical: in practice, there is always an upper bound on
the number of photons that can be produced by a re-
alistic device. To model this situation, we choose here
a Gaussian probability distribution for the input states,
denoted by p⇥(�) = ⇤e�⇥|�|2 , normalized with respect to
the measure d2�/⌅. With this choice, the expected pho-
ton number is ⇥ = 1/⇤ and a coherent state with more
than n⇥ = 9/2⇤ photons is unlikely to occur. The best
amplifier is the one that maximizes the average fidelity

Fg,⇥ =

�

�⌅C

d2�

⌅
p⇥(�)Fg,�. (2)

Let us first establish the performances that can be
achieved using two-mode squeezing. Computing the aver-
age fidelity and optimizing over the value of the squeezing
parameter we obtain [23]

F opt
g,⇥ =

⌅
⌥⌥⌃

⌥⌥⇧

⇤+ 1

g2
, ⇤ ⇤ g � 1

⇤

⇤+ (g � 1)2
, ⇤ > g � 1.

(3)

Note that the fidelity is a continuous function of both g
and ⇤, although at the critical value ⇤c = g � 1 there is
a discontinuity in the first derivative. The critical value
⇤c = g� 1 separates two qualitatively di⇤erent domains:
for ⇤ ⇤ ⇤c the optimal amount of squeezing in Eq. (1) is

r = cosh�1
⇥

g
⇥+1

⇤
, while for all values ⇤ > ⇤c the opti-

mal value is r = 0, corresponding to no squeezing at all.
In other words, when the prior information about the in-
put state is large (compared to the desired gain) there

is no genuine amplifier based on two-mode squeezing:
quite paradoxically, the best amplifying strategy consists
in leaving the state unamplified. In the case of cloning,
this fact was noted by Cochrane, Ralph, and Dolińska
in Ref. [15], who considered cloning processes based on
two-mode squeezing.
We now prove that no physical process can have bet-

ter amplifying performances than two-mode squeezing.
First, we provide a general upper bound on the fidelity
of an arbitrary amplifier, without invoking Gaussianity
or any other simplifying assumption.

Lemma 1 Every physical process has amplification fi-
delity upper bounded by

Fg,⇥ ⇤⌃Ag,⇥,⌅⌃⇤

Ag,⇥,⌅ :=

�
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2 ,

(4)

where ⌃ is any quantum state satisfying ⌃ > 0,
⌃Ag,⇥,⌅⌃⇤ denotes the operator norm ⌃Ag,⇥,⌅⌃⇤ :=
sup⇧�⇧=1⌅⇥|Ag,⇥,⌅|⇥⇧, and �̄ denotes the complex con-
jugate.

Proof. We have
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= Tr[Ag,⇥,⌅�C ],

where �C is the quantum state defined by

⌅k|⌅l|�C |m⇧|n⇧ := ⌅k|C
⇥
⌃̄

1
2 |l⇧⌅n|⌃̄ 1

2

⇤
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bound of Eq. (4) then follows from the inequality
|Tr[Ag,⇥,⌅�C ]| ⇤ ⌃Ag,⇥,⌅⌃⇤. ⌅

Remark. Note that in Eq. (4) there is no need for
the prior distribution to be Gaussian: for every prior
distribution, and for every quantum state ⌃ in Eq. (4)
provides an upper bound on the fidelity.
We are now ready to prove our key result:

Theorem 1 (Optimality of two-mode squeezing)
Two-mode squeezing is the optimal amplifying process
for Gaussian-distributed coherent states.

Proof. Our strategy is to find a state ⌃ such that
the upper bound of Eq. (4) matches the lower
bound of Eq. (3), thus proving the optimality of
two-mode squeezing. As an ansatz, we assume ⌃
to be the thermal state ⌃ = (1 � x)

⌦⇤
n=0 x

n|n⇧⌅n|,
so that the operator in Eq. (4) becomes Ag,⇥,⌅ =
⇥

1�x
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erator norm of Ag,⇥,⌅ can be computed using the rela-

tion ⌃Ag,⇥,⌅⌃⇤ = limp⇥⇤ (Tr |Ag,⇥,⌅|p)
1
p . Omitting the

{ {

two-mode squeezing
operator

ancillary mode in the 
vacuum state

For the input     |↵�
the output is a thermal state displaced by 

g�, g = cosh r

Approximate 
deterministic amplification

Optimal for suitably chosen values of r
(Namiki PRA 2011, 
 Chiribella and Xie PRL 2013).



Noiseless probabilistic amplifiers

Ralph and Lund (2008) propose a probabilistic scheme
achieving almost perfect amplification.  

QN (⇢) = QN ⇢Q†
N QN :=

NX

n=0

gn

gN
|nihn|

For large N: QN (|↵ih↵|) ⇡ |g↵ihg↵|

(while the probability drops exponentially)



Probabilistic amplifiers in the lab
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Abstract
Heralded noiseless amplification of photons has recently been shown to provide a means to overcome
losses in complex quantum communication tasks. In particular, to overcome transmission losses that
could allow for the violation of a Bell inequality free from the detection loophole, for device independent
quantum key distribution (DI-QKD). Several implementations of a heralded photon amplifier have been
proposed and the first proof of principle experiments realized. Here we present the first full
characterization of such a device to test its functional limits and potential for DI-QKD. This device is
tested at telecom wavelengths and is shown to be capable of overcoming losses corresponding to a
transmission through 20 km of single mode telecom fibre. We demonstrate heralded photon amplifier
with a gain >100 and a heralding probability >83%, required by DI-QKD protocols that use the Clauser–
Horne–Shimony–Holt inequality. The heralded photon amplifier clearly represents a key technology for
the realization of DI-QKD in the real world and over typical network distances.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0
licence (http://creativecommons.org/licenses/by/3.0) . Any further distribution of this work must
maintain attribution to the author(s) and the title of the work, journal citation and DOI.

1. Introduction
The concept of amplification in communication systems has long been used in the classical regime to
overcome transmission loss. However, for quantum systems, amplification of quantum states is generally
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Heralded noiseless linear amplification and
distillation of entanglement
G. Y. Xiang1, T. C. Ralph2, A. P. Lund1,2, N. Walk2 and G. J. Pryde1*

Signal amplification is ubiquitous in the control of physical
systems, and the ultimate performance limit of amplifiers is
set by quantum physics. Increasing the amplitude of an
unknown quantum optical field, or any harmonic oscillator
state, must introduce noise1. This linear amplification noise pre-
vents perfect copying of the quantum state2, enforces quantum
limits on communications andmetrology3, and is themechanism
preventing the increase of entanglement via local operations.
Non-deterministic versions of ideal cloning4 and local entangle-
ment increase (distillation)5 are allowed, suggesting the possi-
bility of non-deterministic noiseless linear amplification. Here
we introduce, and experimentally demonstrate, such a noiseless
linear amplifier for quantum states of the optical field, and
use it for distillation of field-mode entanglement. This simple
but powerful circuit enables practical devices for enhancing
quantum technologies. The idea of noiseless amplification
unifies approaches to cloning and distillation, and will find
applications in quantum metrology and communications.

A quantum-noise-free amplifier, if it could be constructed, could
aid a wide variety of quantum-enhanced information protocols, pri-
marily through its ability to distill and purify continuous-variable
entanglement. This type of entanglement is characterized by non-
classical correlations between the field quadrature, or position and
momentum, variables of two or more subsystems3. The ability to
distill and purify entanglement is essential for increasing the
range of protocols, such as continuous-variable teleportation6,
dense coding7,8 and quantum key distribution9,10. Additionally,
more general field-mode entanglement is the basis for many
approaches to quantum-enhanced metrology11.

Deterministic, noiseless linear amplification is impossible1,2. We
therefore consider a device that performs the transformation

jalkaj ! rðaÞ ¼ Pjgalkgajþ ð1% PÞj0lk0j ð1Þ

where g is a real number obeying jgj. 1 and jal is a coherent state
of the field with complex amplitude a. We assume a heralding signal
identifies which term in the output density operator has been pro-
duced by any particular run of the device. Thus, with probability
P, noiseless amplification of the input is achieved. When amplifica-
tion fails, we assume, without loss of generality, that the output state
is vacuum. The linearity of quantum mechanics requires that the
distinguishability of quantum states cannot be increased. This
bounds P, so that if P & ð1% e%jaj2Þ=ð1% e%jgaj2Þ, non-determinis-
tic noiseless linear amplification is physically allowed.

Our circuit for realizing the noiseless linear amplification (NLA)
of equation (1) is shown schematically in Fig. 1a. The optical mode
to be amplified is divided evenly between N paths. Each path under-
goes an amplification stage (Fig. 1b), which implements a general-
ization of the quantum scissors of Pegg et al.12 using a single
photon ancilla and photon counting. The amplification is successful

if exactly one photon is counted at exactly one of the conditioning
detectors. The N paths are then recombined interferometrically.
Without the amplifier stages ‘A’, all input light would emerge in
the original mode. Successful operation is heralded when photon
counters on the other N2 1 modes register no counts, given that
each amplifier stage ‘A’ also yielded a heralding signal. We note
that the efficiency of these detectors is not a critical parameter
because, even with the amplification stages, the interferometer
remains close to balanced and so the probability that any photons
exit through these ports is very small.

First consider an input coherent state jal. The 2N-port splitter
divides it into the product state ja0l ja0l ja0l. . . , with a0 ¼ a/

p
N.

Hence we can consider each amplifier stage separately. The general-
ized quantum scissor truncates the coherent state to first order and
simultaneously amplifies it. Specifically, detection of a single photon
at port D2 and zero photons at port D3, or vice versa, produces
the transformation

ja0la0 ! exp %ja0j2=2
! " ffiffiffi

h

2

r
1+

ffiffiffiffiffiffiffiffiffiffiffiffi
1% h

h

r
âya0

$ %
j0l ð2Þ

where the+corresponds to the two possibilities and â† is the optical
creation operator. A phase flip can be corrected by feedforward to a
phase shifter. In the original scissors, h¼ 0.5, and the truncated
state is not amplified12. A sucessful coherent recombination of the
modes at the second 2N-port splitter produces

exp %jaj2=2
! "

hN=2 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1% h

h

r
ây

a

N

$ %N

j0l ð3Þ

For large N (that is, N' g jaj),

lim
N!1

1þ gây
a

N

& 'N
j0l ¼ exp gâya

! "
j0l ð4Þ

where g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1% hÞ=h

p
. We recognize the right-hand side of

equation (4) as being proportional to a coherent state with amplitude
jgaj. Thus, in the large N limit, the device of Fig. 1 effects the trans-
formation

jal ! hN=2 exp %ð1% g2Þjaj2=2
! "

jgal ð5Þ

For h, 1/2, g. 1, and hence we achieve a NLA according to
equation (1). The amplitude gain is g, and g2 is the intensity gain.
The probability of success is given by the norm, P ¼ hNe%ð1%g2Þjaj2 .

The key component of the noiseless linear amplifier of Fig. 1a is
the single amplifier stage (Fig. 1b), which we experimentally
implemented using linear optics and photon counting. Previously,
the truncation properties—without amplification—of the scissors
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Implementation of a Nondeterministic Optical Noiseless Amplifier
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Quantum mechanics imposes that any amplifier that works independently on the phase of the input

signal has to introduce some excess noise. The impossibility of such a noiseless amplifier is rooted in the

unitarity and linearity of quantum evolution. A possible way to circumvent this limitation is to interrupt

such evolution via a measurement, providing a random outcome able to herald a successful—and

noiseless—amplification event. Here we show a successful realization of such an approach; we perform

a full characterization of an amplified coherent state using quantum homodyne tomography, and observe a

strong heralded amplification, with about a 6 dB gain and a noise level significantly smaller than the

minimal allowed for any ordinary phase-independent device.

DOI: 10.1103/PhysRevLett.104.123603 PACS numbers: 42.50.Dv, 03.67.Hk, 42.50.Ex, 42.50.Xa

Quantum optical detection techniques are so advanced
that quantum fluctuations are the main source of noise.
Therefore, when amplifying optical signals, one has to
look at the intrinsic limitations of the process: any ampli-
fier cannot work independently on the phase of the input
unless some additional noise is added [1]. The origin of this
limitation is that adding extra noise is needed for the output
field to obey Heisenberg’s uncertainty relation. Also, it is
connected to the impossibility of realizing arbitrarily faith-
ful copies of a quantum signal [2,3], and it is thus deeply
rooted in the linear and unitary evolution of quantum
mechanical systems.

Various aspects of this limitation have been studied by
using optical parametric amplifiers [4–7]. For instance, a
nondegenerate optical parametric amplifier amplifies all
input phases, and introduces the minimal level of added
noise, which degrades the signal-to-noise ratio [1]. The
same process, driven in the degenerate regime, may pro-
vide amplification preserving the signal-to-noise ratio.
However, this occurs in a phase-dependent fashion: only
the part of the signal in phase with the pump light will be
amplified, while the part which is 90! out of phase with the
pump will be deamplified [4,5].

Amore intriguing idea is to find a way to tamper with the
linear evolution of quantum mechanics; this is actually
possible, though nondeterministically, by conditioning
our observation upon the result of a measurement [8].
Noiseless amplification can then take place, but only a
fraction of the times, and the correct operation is heralded
[9,10]. This strategy is commonly adopted for building
effective nonlinearities in linear quantum optical gates
[11–13].

Here we follow the proposal of Ralph and Lund [9] to
demonstrate experimentally that heralded nondeterministic
amplification can realize processes which would be impos-
sible for usual amplifiers. Unlike another realization [14],
we have direct access to the output state via state tomog-

raphy, so we can provide a complete description of the
process, and analyze the limitations arising from nonideal
components. Our study is relevant in the long-term view of
the integration of amplifiers in quantum communication
lines [15].
The conceptual layout of the noiseless amplifier is pre-

sented in Fig. 1. The operating principle is closely related
to quantum teleportation [16–19], and is actually a varia-
tion of the quantum scissors protocol [20,21]: the phase
and amplitude information of the input are transferred via a
generalized teleportation onto a superposition of the vac-
uum and a single photon. If the input is not too large, such
superposition is still adequate to describe a coherent state
with a good fidelity. The amplification is allowed by the
use of a nonmaximally entangled resource [9].
More in detail, a coherent state j!i is fed into the input

mode of the amplifier; at the same time an auxiliary single-

FIG. 1 (color online). Conceptual layout of the noiseless am-
plifier. A single photon is split on an asymmetric beam splitter
(A-BS). The input state j!i is superposed with reflected output
of the A-BS on asymmetric beam splitter (S-BS). A successful
run of the amplifier is flagged by a single-photon event on
detector D1 and no photons on detector D2. The transmitted
mode constitutes the output mode of the amplifier, and is
approximately in an amplified state jg!i, conditioned on the
right detection events, as described by Eq. (1).
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Noise-powered probabilistic concentration of
phase information
Mario A. Usuga1,2†, Christian R. Müller1,3†, Christoffer Wittmann1,3, Petr Marek4, Radim Filip4,
Christoph Marquardt1,3, Gerd Leuchs1,3 and Ulrik L. Andersen2*
Phase-insensitive optical amplification of an unknownquantum
state is known to be a fundamentally noisy operation that
inevitably adds noise to the amplified state1–5. However,
this fundamental noise penalty in amplification can be
circumvented by resorting to a probabilistic scheme as
recently proposed and demonstrated in refs 6–8. These
amplifiers are based on highly non-classical resources in a
complex interferometer. Here we demonstrate a probabilistic
quantum amplifier beating the fundamental quantum limit
using a thermal-noise source and a photon-number-subtraction
scheme9. The experiment shows, surprisingly, that the addition
of incoherent noise leads to a noiselessly amplified output state
with a phase uncertainty below the uncertainty of the state
before amplification. This amplifier might become a valuable
quantum tool in future quantum metrological schemes and
quantum communication protocols.

Besides being the subject of a fundamental discussion going
back to Dirac10, the measurement of phase is at the heart of many
quantum metrological and quantum informational applications
such as gravitational wave detection, global positioning, clock syn-
cronization, quantum computing and quantum key distribution.
In many of these applications, the phase is most often imprinted
onto a coherent state of light and subsequently estimated using
an interferometric measurement scheme. Such a phase-estimation
process11 is however hampered by the fundamental quantum noise
of the coherent state, which plays an increasingly devastating role
as the excitation of the coherent state becomes smaller. Small
coherent-state excitations and associated large phase uncertainties
are typical in real systems such as long-distance coherent-state
communication and lossy interferometry.

To reduce the phase uncertainty and thus concentrate the
phase information, the state must be amplified noiselessly. This
can be done probabilistically using either a highly complicated
interferometric set-up of single-photon sources6–8, a sophisticated
sequence of photon-addition and -subtraction schemes9,12 or a very
strong cross-Kerr nonlinearity13.However, aswe show in this Letter,
it is possible to amplify the phase information noiselessly without
the use of any non-classical resources or any strong parametric
interactions. Remarkably, the supply of energy in our amplifier is
simply a thermal-light source.

A schematic of the probabilistic amplifier9 is shown in Fig. 1a.
It is solely based on phase-insensitive noise addition and photon
subtraction. To explain in simple terms why the addition of noise
can help amplify a coherent state, we consider the phase-space
pictures in Fig. 1b. The addition of thermal noise induces random

1Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1, 91058 Erlangen, Germany, 2Department of Physics, Technical University of
Denmark, 2800 Kongens Lyngby, Denmark, 3Institute for Optics, Information and Photonics, University Erlangen-Nuremberg, Staudtstr. 7/B2, 91058
Erlangen, Germany, 4Department of Optics, Palack< University 17, listopadu 50, 772 07 Olomouc, Czech Republic. †These authors contributed equally to
this work. *e-mail: ulrik.andersen@fysik.dtu.dk.

displacements to the coherent state, thus resulting in a Gaussian
mixture of coherent states; some with excitations that are larger
than the original excitation and some with smaller excitations.
In the photon-subtraction process, the coherent states with large
excitations are probabilistically heralded, thereby rendering the
state in amixture consisting of themost excited coherent states from
the original Gaussianmixture. As illustrated in Fig. 1b, the resulting
state is amplified and possesses a reduced phase uncertainty.

The probabilistic photon-subtraction procedure can be approx-
imated by a largely asymmetric beam splitter combined with a
photon-number-resolving detector (PNRD; see Fig. 1a). A small
portion of the displaced thermal state is directed to the photon
counter and when a pre-specified number of photons is detected,
the transmitted state is heralded. Such an approach for photon-
number subtraction has also been employed for the generation of
coherent-state superpositions14,15. However, in contrast to previous
implementations that were limited to the demonstration of two-
photon subtraction16, here we subtract up to four photons.

To elucidate the function of the amplifier, theoretically,
we consider the amplification of a small-amplitude (|�| ⇧ 1)
coherent state that can be approximately described in the two-
dimensional Fock space: |�⌦ ⌅ |0⌦ + �|1⌦. As the amplitude is
small, the canonical-phase variance of this state is to a very good
approximation given by17

VC ⌅ 1
|�|2 (1)

This variance represents the fundamental uncertainty in estimating
the phase of the coherent state when a hypothetically ideal
phase measurement is employed18. The aim is to produce an
amplified state with a phase variance reduced with respect to the
coherent-state variance in (1), thereby concentrating the phase
information. If a conventional phase-insensitive amplifier is used
to amplify the coherent state, the resulting variance is larger
than (1) (see Supplementary Information). On the other hand,
if our amplifier is employed with weak Gaussian noise addition
followed by single-photon subtraction, the resulting state is9

⇥̂ ⌅ 1
|�|2 +Nth +4|�|2Nth

⇥ [|�|2|0⌦ 0|+Nth(|0⌦+2�|1⌦)( 0|+  1|2�⇤)]

with the canonical-phase variance

V amp
C ⌅ 1

4|�|2
�
1+ |�|2

Nth

⇥
�1
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A high-fidelity noiseless amplifier for quantum
light states
A. Zavatta1,2, J. Fiurášek3 and M. Bellini1,2*

Noise is the price to pay when trying to clone or amplify arbitrary quantum states. However, the quantum noise associated
with linear phase-insensitive amplifiers can be avoided by relaxing the requirement of a deterministic operation. Here we
present the experimental realization of a novel concept of a probabilistic noiseless linear amplifier that is able to amplify
coherent states at the highest levels of effective gain and final state fidelity ever reached. Based on a sequence of photon
addition and subtraction, this high-fidelity amplification scheme is likely to become an essential tool for applications of
quantum communication and metrology.

Noise is unavoidably added in any deterministic linear amplifi-
cation or cloning of quantum states, and any input pure
state results in a mixed output one1,2. Being a consequence

of the linearity and unitary evolution of quantum mechanics, it
guarantees against unphysical situations such as the violation of
the Heisenberg uncertainty principle or the superluminal exchange
of information3,4.

This has profound implications from a practical point of view in
the frame of quantum information processing and quantummetrol-
ogy. Let us consider the case where some quantum information (or
classical parameter value) is encoded in the complex amplitude a of
a coherent state |al. If the state amplitude is made too small (gen-
erally by losses), then the strong overlap between different states
can make it impossible to correctly distinguish among them.
Simply amplifying the states would not solve the problem,
because it would also amplify the quantum fluctuations of the
coherent states, in fact increasing their overlap and making the situ-
ation worse (Fig. 1).

A solution to this problem would be provided by an ideal noise-
less amplifier of coherent states of light, the action of which can be
mathematically described as

|al ! |gal (1)

where g. 1 is the amplification gain. Referring to the above example,
a sufficient noiseless amplification of partially overlapped coherent
states would allow one to make them exactly distinguishable.

Transformation (1) is unphysical, but can be implemented
probabilistically in an approximate way. Ralph and Lund5 recently
proposed a scheme based on the application of multiple
quantum-scissors blocks6,7 to non-deterministically amplify the
low-amplitude portions obtained by splitting a coherent state before
their coherent recombination in an interferometric setup. Although
the complete scheme is almost impossible to realize with current
technologies, the functioning of its quantum-scissors core element
has been recently demonstrated by two experimental groups8,9.

We follow a completely different route, based on a combination
of photon addition and subtraction, and show that the perform-
ances of this approach are far superior, both in terms of higher effec-
tive amplification and higher fidelity of the final states to the ideal
target coherent state |gal.

Addition and subtraction of single photons are the result of the
application of the creation and annihilation operators â† and â to an
arbitrary state of light. Depending on the ordering of such oper-
ations, a transformation ââ† or â†â can be applied to the initial
state. Sequences and coherent superpositions of such quantum
operators have recently been demonstrated experimentally10,11. By
making a coherent linear combination of these two operations
with suitable weights, one can obtain

Ĝ = (g − 2)â†â+ ââ† = (g − 1)n̂+ 1 (2)

where n̂¼ â†â is the photon number operator. As shown in
ref. 12, operation (2) is a good approximation of the ideal noiseless
amplification process (1) for weak coherent states. Of particular
interest is the nominal gain g¼ 2. In this case, the formula

Noiseless amplifier

Classical amplifier

Quantum limited amplifier

x

p

Figure 1 | Wigner function contours of input and amplified coherent states.
The quantum-noise-limited amplifier with amplitude gain g invariably adds
noise equivalent to at least 2(g22 1) vacuum-noise units1. The best classical
linear amplifier based on a measure-and-prepare strategy adds even more
noise, at least 2g2 vacuum-noise units. In contrast, the probabilistic noiseless
amplifier preserves the noise of coherent states while amplifying
their amplitude.
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Heralded noiseless amplification of a photon
polarization qubit
S. Kocsis1,2, G. Y. Xiang2,3, T. C. Ralph1,4 and G. J. Pryde1,2*

Photons are the best long-range carriers of quantum
information, but the unavoidable absorption and scattering
in a transmission channel places a serious limitation on
viable communication distances. Signal amplification will
therefore be an essential feature of quantum technologies,
with direct applications to quantum communication, metrology
and fundamental tests of quantum theory. Non-deterministic
noiseless amplification of a single mode1–5 can circumvent
the challenges related to amplifying a quantum signal, such
as the no-cloning theorem6 and the minimum noise cost for
deterministic quantum state amplification7. However, existing
devices are not suitable for amplifying the fundamental optical
quantum information carrier: a qubit coherently encoded
across two optical modes. Here, we construct a coherent
two-mode amplifier to demonstrate the first heralded noiseless
linear amplification of a qubit encoded in the polarization state
of a single photon. In doing so, we increase the transmission
fidelity of a realistic qubit channel by up to a factor of five.Qubit
amplifiers promise to extend the range of secure quantum
communication8,9 and other quantum information science and
technology protocols.

The quintessential model for encoding quantum information is
the qubit. Qubits, or systems of entangled qubits, are central tomost
protocols for transmitting and processing quantum information10,
and play a large role in other proposed quantum technologies11,12
and proposed investigations of quantum mechanics (for example
ref. 13). A natural implementation of a travelling qubit is
one excitation shared between two harmonic oscillators. (This
implementation may also be relevant to cavities or other bounded
oscillators.) In optics, this implementation is a photonic qubit,
in which the information is encoded in orthogonal polarization,
spatial or temporal modes of a single photon.

A great deal of attention has been devoted to the problem
of efficiently transmitting quantum states—such as qubits—over
significant distances. Some key examples serve to demonstrate why
overcoming loss is of both fundamental and practical interest.
From a fundamental standpoint, all long-range Bell inequality
tests have been vulnerable to the detection loophole: owing
to losses, not all entangled pairs are detected, and the fair
sampling assumption is invoked to argue that the undetected pairs
would not have significantly changed the measurement statistics.
Inevitable transmission losses can in principle be compensated
by amplifying the signal. The theoretical limitation forbidding
noiseless amplification of a quantum state can be circumvented
only by making the process non-deterministic. Such a noiseless
qubit amplifier, although non-deterministic, could amplify a

1Centre for Quantum Computation and Communication Technology (Australian Research Council), Australia, 2Centre for Quantum Dynamics, Griffith
University, Brisbane 4111, Australia, 3Key Laboratory of Quantum Information, University of Science and Technology of China, CAS, Hefei 230026, China,
4School of Mathematics and Physics, University of Queensland, Brisbane 4072, Australia. *e-mail: G.Pryde@griffith.edu.au.

quantum state in a heralded way. A heralding signal allows
two parties to be certain that they share a maximally entangled
pair before measurement. This implies that the overall detection
efficiency in the presence of heralding would no longer depend
on transmission efficiency, but only on the intrinsic efficiencies of
the measuring devices.

Closing the detection loophole in an optical Bell test experi-
ment is essentially equivalent to establishing device-independent
quantum key distribution (DIQKD) between two parties, as the
rigorous violation of a Bell inequality guarantees the presence of en-
tanglement independent of the specific measurement procedure8,14.
Other approaches to overcoming the detection loophole have been
proposed, such as heralding qubit states using quantum non-
demolition measurements15, for example, but so far these other
protocols have not been experimentally realized.

After transmission through any quantum channel with non-zero
loss, a photonic qubit will be in the mixed state ⌅in, consisting of a
vacuum and a single-photon component,

⌅in = ⇤0|00�⌥00|+⇤1|⇧ in
1 �⌥⇧ in

1 | (1)

where the vacuum component will dominate (⇤0 > ⇤1) for a very
lossy channel. The qubit is encoded in the polarization state of the
single-photon subspace:

|⇧ in
1 � =�|1H0V�+⇥|0H1V� ⇤�|H�+⇥|V�

The state⌅in is the input to the qubit amplifier, H denotes horizontal
and V vertical. Such a heralded noiseless amplifier is a quantum cir-
cuit that works probabilistically, but with an independent heralding
signal, and generates the transformation

⌅in ⌅ (1�P)|00�⌥00|⇥⌃f +P⌅out ⇥⌃h (2)

Here⌃h is the projector onto the subspace of heraldingmode states
corresponding to successful amplification, with the amplified state
⌅out at the circuit output:

⌅out =
⇤0|00�⌥00|+g 2⇤1|⇧ in

1 �⌥⇧ in
1 |

N
(3)

and ⌃f (fail) is the projector onto the subspace of cases where the
heralding success signal is not received. The relative weighting of
the qubit subspace |⇧ in

1 � in the mixed state is increased by a factor
g 2. In the absence of imperfections, the qubit amplifier leaves the
qubit subspace itself unchanged; experimental imperfections may
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• Is RL08 the optimal probabilistic process for amplification?
    Or is there an even better amplifier?

Questions

• How do these experiments compare with amplification 
    strategies based on probabilistic estimation?
   (i.e. what is the relation between amplification and 
           estimation inside the probabilistic world?)



Modeling the source

To model the source of coherent states we assume a 
Gaussian distribution:  

p�(�) = ⇥e��|↵|2

with this choice the expected photon number is hni = 1/�

� represents our prior information about the input:             

� = 0 ) no information

� = 1 ) complete information



The best probabilistic amplifiers

When the prior information is larger than a critical value, 
nearly perfect amplification becomes possible!

critical behavior at the value

3

processes the gap between the quantum fidelity and the
CFT is equal to the gap between the maximum Bell cor-
relation achievable with entangled states and the max-
imum Bell correlation achievable with separable states.
This relation establishes a tight connection between the
demonstration of genuine quantum processing and the
violation of suitable Bell-type inequalities.

We are now ready to tackle the optimal design of quan-
tum amplifiers and to find the corresponding CFT. To
account for the prior information about the input, we
introduce a probability distribution p(�), normalized as�

d2�
⇤ p(�) = 1. The most popular choice for p(�), typi-

cally considered in the literature [23, 27–31], is a Gaus-
sian distribution with mean �0 and variance V = 1/⇥.
The idealized “uniform prior” can be retrieved here in the
limit ⇥ ⌅ 0. Note that it is not restrictive to consider
probability distributions centred around �0 = 0: indeed,
both in the deterministic and probabilistic case, the fi-
delity does not change if one 1) replaces the prior p(�)
by p(���0), 2) displaces the input state by ��0, and 3)
displaces the output of the amplifier by g�0. For �0 = 0,
the Gaussian p⇥(�) = ⇥e�⇥|�|2 represents the distribu-
tion of coherent states generated by a classical oscillator
obeying the Boltzmann distribution and ⌥n� = 1/⇥ is
the expected photon number. A controlled way to gener-
ate Gaussian-distributed coherent states is to prepare a
two-mode squeezed state and perform a heterodyne mea-
surement on one mode.

To determine the optimal deterministic amplifiers, it
is useful to assess first the performances that can be
achieved using two-mode squeezing, i.e. using quantum
channels of the form

Cr(⇤) = TrB [e
r(a†b†�ab)(⇤⇥ |0�⌥0|)e�r(a†b†�ab)], (5)

where r is the squeezing parameter, a and b are the an-
nihilation operators of the input mode and of an ancil-
lary mode, respectively, and TrB denotes the partial trace
over the ancillary Hilbert space. Optimizing the value of
the squeezing parameter one obtains the fidelity [33]

F squeez
g,⇥ =

⇤
⌃⌃⇧

⌃⌃⌅

⇥+ 1

g2
, ⇥ ⇤ g � 1

⇥

⇥+ (g � 1)2
, ⇥ > g � 1.

(6)

Note the discontinuity of the first derivative of the fi-
delity at the critical value ⇥det

c = g � 1. This value sep-
arates two di�erent domains: for ⇥ ⇤ ⇥det

c the optimal

amount of squeezing in Eq. (5) is r = cosh�1
�

g
⇥+1

⇥
,

while for all values ⇥ > ⇥det
c the optimal value is r = 0,

corresponding to no squeezing at all. In other words,
when the prior information about the input state is large
(i.e. when the variance is small), the best amplifying
strategy consists in leaving the state unamplified. In the
case of 1-to-2 cloning, this fact was noted by Cochrane,

Ralph, and Dolińska [15], who assumed from the start
cloning processes based on two-mode squeezing. Armed
with Theorem 1, we are now in position to prove that no
deterministic process can beat two-mode squeezing:

Theorem 3 (Optimal design of deterministic am-
plifiers [33]) Two-mode squeezing is the best determin-
istic process for the amplification of Gaussian-distributed
coherent states.

For probabilistic amplifiers, however, the situation is
very di�erent. Evaluating Eq. (2) we get [33]

F prob
g,⇥ =

⇤
⇧

⌅

⇥+ 1

g2
, ⇥ ⇤ g2 � 1

1 ⇥ > g2 � 1.

(7)

The di�erence with the deterministic case is dramatic:
above the the critical value ⇥prob

c = g2 � 1 probabilis-
tic processes allow for noiseless amplification. Fidelity
arbitrarily close to F prob

g,⇥ can be reached as follows:

Theorem 4 (Optimal design of probabilistic am-
plifiers [33]) The best probabilistic amplifier for
Gaussian-distributed coherent states is

1. for ⇥ ⇤ ⇥det
c , the two-mode squeezer (5) with

squeezing parameter r = cosh�1[g/(⇥+ 1)]

2. for ⇥det
c < ⇥ ⇤ ⇥prob

c , a quantum operation

QN (⇤) = QN⇤QN with QN ⇧
⌥N

n=0[(⇥ +

1)/g]n|n�⌥n|, achieving fidelity F prob
g,⇥ = (1 + ⇥)/g2

exponentially fast in the limit N ⌅ ⌃

3. for ⇥ > ⇥prob
c , a quantum operation QN (⇤) =

QN⇤QN with QN ⇧
⌥N

n=0 g
n|n�⌥n|, achieving the

fidelity F prob
g,⇥ = 1 exponentially fast in the limit

N ⌅ ⌃.

Note that for ⇥ > g� 1 the optimal quantum operations
are non-Gaussian, whereas for ⇥ = 0 (“uniform prior”)
the optimal deterministic and probabilistic amplifiers co-
incide and are Gaussian. Noiseless amplification is only
possible when the expected photon number is finite.
Suppose now that an experiment aims at demonstrat-

ing quantum amplification—or equivalently, cloning—of
a coherent state. Thanks to Theorem 2, we can easily
find the analytical expression of the CFT, also specify-
ing the best measure-and-prepare channel. The result
applies to both deterministic and probabilistic protocols,
and, as an extra bonus, provides a coincise derivation of
the quantum benchmark for teleportation and storage of
coherent states found by Hammerer, Wolf, Polzik, and
Cirac [23], which is retrieved here in the special case of
no amplification (g = 1).

�prob

c

= g2 � 1

Above the critical value, 
the best probabilistic amplifier becomes non-Gaussian and is achieved
by RL08 protocol   (Chiribella & Xie PRL 2013) 
Having a non-flat prior is essential.



The best amplifier based on measurement and re-preparation is:   

measurement:   heterodyne POVM  

states re-prepared for outcome      :

P↵ d2� = |�⇥��| d
2�

⇥

↵
����

g

1 + ⇥
�

�

Its fidelity is

3

calculation, which simply consists of Gaussian integrals
[23], we have

Tr |Ag,⇤,⌃|p =
1

det[�p]

⌅
⇧

1� x

⇧p
(5)

where �p is the p⇥p matrix defined by [�p]mn = a⇤mn�
b⇤m,(n�1) mod p � c⇤m,(n+1) mod p, with a = ⇧ + 1 + g2,
b = g2 and c = 1/x. Eq. (5) then implies

�Ag,⇤,⌃�⌅ =
⇧

(1� x) limp⇤⌅(det�p)
1
p

. (6)

Now, �p is a circulant matrix [24] and therefore its
eigenvalues are ⇥p,n = a � b⌦n

p � c⌦�n
p , with ⌦p :=

exp(2⌃i/p) and n = 0, . . . , p� 1. Hence, we have

lim
p⇤⌅

ln (det�p)
1
p = lim

p⇤⌅

1

p

p�1 

n=0

ln(a� b⌦n
p � c⌦�n

p )

=

⌦ 2⌅

0

d⌅

2⌃
ln(a� bei⇥ � ce�i⇥).

For x ⇧ 1/(⇧ + 1) we can decompose a � bei⇥ �
ce�i⇥ = b(ei⇥ � y+)(y�e�i⇥ � 1) with y± =
⇤+g2+1±

 
(⇤+g2+1)2�4g2/x

2g2 , we finally obtain

lim
p⇤⌅

ln
⇥
detAp

g,⇤,⌃

⇤ 1
p
=

⌦ 2⌅

0

d⌅

2⌃
ln[b(y+ � ei⇥)] + ln[1� y�e

�i⇥]

= ln(by+),

which, inserted in Eq. (6) gives

�Ag,⇤,⌃�⌅ =
2⇧

(1� x)(⇧+ g2 + 1 +
�
(⇧+ g2 + 1)2 � 4g2/x)

.

We now separate the two cases ⇧ > g�1 and ⇧ ⌅ g�1.
For ⇧ > g � 1, we choose x = g

⇤+g+(g�1)2 and obtain

�Ag,⇤,⌃�⌅ = ⇤
⇤+(g�1)2 , matching the lower bound of Eq.

(3). For ⇧ ⌅ g � 1, we choose x = 1/(⇧ + 1) and obtain
�Ag,⇤,⌃�⌅ = (⇧+ 1)/g2, again, matching Eq. (3). ⌅

Theorem 1 determines the optimal design of quan-
tum amplifiers for coherent states. Suppose now
that an experiment aims at demonstrating quantum
amplification—or equivalently, cloning—of a coherent
state. To establish the successful demonstration of a
quantum task, one has to compare the fidelity achieved
experimentally with the maximum value of the fidelity
that can be achieved by a classical, measure-and-prepare
protocol [20, 25–27], where the input state is measured
with a POVM {Pj}j⇧Y and, conditionally on the out-
come j, a state ⌥j is prepared. The classical fidelity is
given by

↵Fg,⇤ =

⌦
d2�

⌃
p⇤(�)
 

j⇧Y

⌃�|Pj |�⌥ ⌃g�|⌥j |g�⌥, (7)

and the value for the best POVM and for the best choice
of states {| j⌥}j⇧Y gives the benchmark that has to be
surpassed in order to demonstrate a genuine quantum
amplification. To find the benchmark we use the ana-
logue of Lemma 1 for measure-and-prepare strategies,
making an intriguing connection between the demonstra-
tion of genuine quantum processing of information and
the violation of a Bell inequality:

Lemma 2 Every measure-and-prepare strategy has am-
plification fidelity upper bounded by

↵Fg,⇤ ⌅�Ag,⇤,⌃�⇥, (8)

where Ag,⇤,⌃ is the operator defined in Eq. (4),
for an arbitrary state � > 0, and �Ag,⇤,⌃�⇥ de-
notes the injective cross norm [28] �Ag,⇤,⌃�⇥ :=
sup⌃�⌃=⌃⌥⌃=1⌃↵|⌃ |Ag,⇤,⌃|↵⌥| ⌥.

Proof. Follow the same proof of Lemma 1, restricted to
measure-and-prepare channels ↵C(⌥) =

⌥
j⇧Y Tr[Pj⌥] ⌥j ,

note that the state ⇥eC is now separable, and use the
relation Tr[A⇧⇥eC ] ⌅ �Ag,⇤,⌃�⇥. ⌅

Remark. The trace of the separable operator Ag,⇤,⌃

with a quantum state can be interpreted as a Bell-type
correlation. The gap between the norms �Ag,⇤,⌃�⌅ and
�Ag,⇤,⌃�⇥ represents the gap in the correlation for entan-
gled and separable states, respectively.

Theorem 2 (Benchmark for quantum amplifiers)
The quantum benchmark for the amplification of
Gaussian-distributed coherent states is given by

↵F opt
g,⇤ =

1 + ⇧

1 + ⇧+ g2
(9)

and is achieved by a heterodyne measurement P (�̂)d
2�
⌅ =

|�̂⌥⌃�̂|d
2�
⌅ followed by the preparation of the coherent

states
��� g�̂1+⇤

⌃
.

Proof. It is immediate to check that the measure-
and-prepare protocol described in the thesis achieves
the fidelity in Eq. (9). To prove that this value
is optimal we ues Eq. (8) and the fact that
�Ag,⇤,⌃�⇥ = �AT2

⌃ �⇥, T2 denoting the transposi-
tion on the second Hilbert space. With the ansatz
⌥ = (1 � x)

⌥⌅
n=0 x

n|n⌥⌃n|, x = 1/(1 + ⇧) we have

AT2
⌃ = (1 + ⇧)

�
d2�
⌅ |g�⌥⌃g�| ⇤ |

 
1 + ⇧�⌥⌃

 
1 + ⇧�|.

Computing the integral [23], we then get
�AT2

g,⇤,⌃�⌅ = (1 + ⇧)/(1 + ⇧ + g2) = ⌃0|⌃0|AT2
g,⇤,⌃|0⌥|0⌥,

which implies �AT2
g,⇤,⌃�⇥ = (1 + ⇧)/(1 + ⇧+ g2). ⌅

Note that for g = 1 (no amplification), we retrieve
the quantum benchmark for teleportation and storage of
coherent states, derived by Hammerer, Wolf, Polzik, and
Cirac in Ref. [20].

The best estimation-based 
amplifier

Equal to the fidelity of the best deterministic protocol (!) 
by Namiki, Koashi, Imoto, PRL 08

(Chiribella & Xie PRL 2013) 



Application

for Ĝ simplifies, because one term in the superposition (2) vanishes
to give

Ĝg=2 = ââ† (3)

Application of such a transformation for noiseless amplification was
first proposed by Marek and Filip13, and its action is evident if
applied to a weak coherent state approximately described as |al¼
|0lþ a|1l. One obtains ââ†(|0l+ a|1l) ! â(|1l+

!!
2

√
a|2l) !

|0l+ 2a|1l, that is, a doubling of the coherent state amplitude.
We have implemented the probabilistic noiseless amplifier (3)

with nominal gain g¼ 2, the experimental realization of which
does not require interferometric stability, unlike the general case
of g= 2. The experiment is based on a unique and versatile setup
for implementing creation and annihilation operators that has
been recently used to arbitrarily engineer quantum light states
and test fundamental quantum-mechanical rules10,11,14–16. The
addition of a single photon to an arbitrary light state is obtained
by conditional stimulated parametric down-conversion in a non-
linear crystal. Photon addition in the output signal mode is heralded
by the detection (by an on/off photodetector Da) of a single photon
in the idler down-conversion channel15,16. On the other hand,

single-photon subtraction is implemented by conditionally attenu-
ating a state by detecting (with an on/off photodetector Ds) a
single photon reflected from a high-transmissivity beamsplitter
(BS). By placing the parametric down-converter and the beamsplit-
ter in series along the path of a travelling coherent state, one can
herald the application of the ââ† operator by looking for coincident
detections from Da and Ds , as shown in Fig. 2. As discussed else-
where10,11,14–16, the low parametric gain and the low reflectivity of
the BS (set to #5% for these measurements) ensure that multipho-
ton terms are negligible in the addition and subtraction processes,
and guarantee that this experimental scheme is a very faithful
implementation of the ideal operator sequence.

The performance of the implemented approximate amplifier (3)
can be quantified by its effective gain and fidelity. One can define the
effective amplification gain geff as the ratio of the mean values of
amplitude quadrature operators for the output state and the input
coherent state |al, whereas the fidelity of the amplifier is defined
as the normalized overlap of the output state with the ideal target
coherent state |gal (see Methods). Experimental estimation of the
effective gain geff is therefore done by measuring the mean values
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Figure 3 | Amplifier performances. a,b, Dependence of (a) effective gain
and (b) final state fidelity on input state amplitude |a| for a nominal gain
g¼ 2. Red solid curves are calculated for the addition/subtraction scheme,
and blue dashed curves are for the quantum-scissors approach
(see Methods). Square symbols indicate experimental data. c, Measured
variances of the amplitude and phase quadratures of the amplified coherent
state (in shot-noise units) and corresponding (blue solid) curve for the best
deterministic amplifier. Error bars are of a statistical origin and correspond
to one standard deviation. The right panels show contour plots of the
reconstructed Wigner functions for three amplified coherent states of
different amplitudes. The increasing asymmetry with input coherent state
amplitude in the Wigner function contours is caused by the non-Gaussian
nature of the approximate noiseless amplification operation ââ†.
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Figure 2 | Experimental setup. a, Conceptual scheme. Two blocks for
conditional single-photon addition (â†) and subtraction (â) are placed in the
path of a coherent state |al. A coincident click (C) from the two on/off
photodetectors heralds the successful realization of the ââ† operator
sequence and the probabilistic noiseless amplification of the input coherent
state. High-frequency, time-domain, balanced homodyne detection is then
used for a full reconstruction of the involved quantum states. b, Detailed
experimental setup. HT (HR), high transmissivity (high reflectivity)
beamsplitter; LBO, lithium triborate crystal for frequency doubling; SMF,
single-mode fibres; F, narrow spectral filter. All other symbols are defined in
the text and in the Methods.
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demonstrate high-fidelity 
probabilistic amplification with gain 
g = 2.  

Values tested in the experiment:

Experimental fidelities:
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Theorem 5 (Benchmark for quantum amplifiers [33])
The CFT for the amplification of Gaussian-distributed
coherent states is given by

⇤Fg,⇤ =
1 + ⇤

1 + ⇤+ g2
(8)

both for deterministic and probabilistic protocols. The
above value is achieved by a heterodyne measurement
P (�̂)d

2�̂
⌅ = |�̂ ��̂|d

2�̂
⌅ followed by the conditional prepa-

ration of the coherent state
��� g�̂
1+⇤

⇥
.

Eqs. 6, 7 and 8 represent good news for experimental
demonstrations: they prove that genuine quantum am-
plification can be demonstrated for every finite value of
the expected photon number. As an illustration, consider
the demonstration of probabilistic amplification provided
by Zavatta, Fiuráček and Bellini in Ref. [22]. In this
case, the amplifier is designed to achieve gain g = 2. By
Eq. (7), noiseless amplification requires at least ⇤ ⇤ 3,
which is actually a reasonable value in the experiment
(choosing ⇤ = 3 puts the maximum amplitude tested in
the experiment, |�max|2 ⌅ 1.0, at three standard devi-
ations from the mean photon number �n = 1/3, e�ec-
tively cutting o� the values |�| > 1). For ⇤ = 3, Eqs.
(6) and (7) give F squeez

g=2,⇤=3 = 85% and ⇤Fg=2,⇤=3 = 50%
for the fidelity of the best deterministic amplifier and for
the CFT, respectively [35]. The average of the experi-
mental fidelities Fexp ⌅ 0.99/0.91/0.67, corresponding to
the amplitudes |�| ⌅ 0.4/0.7/1.0, gives a value that is
well above the benchmark for genuine quantum process-
ing, but also very close to the value that can be achieved
by deterministic amplifiers. One should observe, how-
ever, that the small number of values of |�| probed in
the experiment precludes an accurate data analysis, as
the average over few values of � is very sensitive to sta-
tistical fluctuations. Our analysis suggest that, although
the available data show a neat quantum advantage over
measure-and-prepare strategies, further experimental in-
vestigations would be desirable to enable a statistically
significant analysis of the advantage of probabilistic am-
plifiers. To guarantee a fair sampling, the ideal setup
would be to test the amplifier on Gaussian-distributed co-
herent states generated randomly by a heterodyne mea-
surement on one side of a two-mode squeezed state.

The classical limit of quantum amplifiers. For
⇤ ⇥ g� 1, the gap between the quantum fidelity and the
CFT is equal to the gap between entangled and separable
states in the Bell correlation �A⇧  . The gap vanishes in
the limit g ⌃ ⌥, and the fundamental reason is that an
amplifier with infinite gain is classical, like a cloning de-
vice producing infinite clones [37–39]. This point is made
very clear by our results: denoting by Cg,⇤ and by ⇤Cg,⇤ the
optimal quantum amplifier and the optimal measure-and-
prepare amplifier, for ⇤ ⇥ g�1 we have the remarkable re-
lation [33] ⇤Cg,⇤ = A g⇥

g2+(�+1)2
C⌦

g2+(⇤+1)2,⇤
, where A⇥ is

the attenuation channel transforming the coherent state
|� into |⇥� , ⇥ ⇥ 1. In words, the best measure-and-
prepare strategy with gain g is equivalent to the best
quantum strategy with gain g� =

⌅
g2 + (⇤+ 1)2, fol-

lowed by an attenuation of ⇥ = g/
⌅

g2 + (⇤+ 1)2 that
reduces the gain from g� to g. When the desired gain is
large compared to the prior information available (g ⇧ ⇤)
we have g� ⌅ g and ⇥ ⌅ 1, which imply ⇤Cg,⇤ ⌅ Cg,⇤.
In conclusion, we established the ultimate quantum

limits to the deterministic and probabilistic amplification
of Gaussian-distributed coherent states, without making
any assumption on the nature of the amplifier and with-
out making the unrealistic assumption of uniform dis-
tribution over coherent states. For probabilistic ampli-
fiers, we discovered the presence of a critical value of the
expected photon number, below which noiseless amplifi-
cation becomes possible. Furthermore, we provided the
quantum benchmark that has to be surpassed in order to
establish the successful experimental demonstration of a
genuine quantum amplifier. Our results show an intrigu-
ing link between genuine quantum amplification and the
maximization of a suitable Bell-type correlation, and, in
addition, they guarantee that a successful demonstration
is possible for any finite value of the expected photon
number.
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by Zavatta, Fiuráček and Bellini in Ref. [22]. In this
case, the amplifier is designed to achieve gain g = 2. By
Eq. (7), noiseless amplification requires at least ⇤ ⇤ 3,
which is actually a reasonable value in the experiment
(choosing ⇤ = 3 puts the maximum amplitude tested in
the experiment, |�max|2 ⌅ 1.0, at three standard devi-
ations from the mean photon number �n = 1/3, e�ec-
tively cutting o� the values |�| > 1). For ⇤ = 3, Eqs.
(6) and (7) give F squeez

g=2,⇤=3 = 85% and ⇤Fg=2,⇤=3 = 50%
for the fidelity of the best deterministic amplifier and for
the CFT, respectively [35]. The average of the experi-
mental fidelities Fexp ⌅ 0.99/0.91/0.67, corresponding to
the amplitudes |�| ⌅ 0.4/0.7/1.0, gives a value that is
well above the benchmark for genuine quantum process-
ing, but also very close to the value that can be achieved
by deterministic amplifiers. One should observe, how-
ever, that the small number of values of |�| probed in
the experiment precludes an accurate data analysis, as
the average over few values of � is very sensitive to sta-
tistical fluctuations. Our analysis suggest that, although
the available data show a neat quantum advantage over
measure-and-prepare strategies, further experimental in-
vestigations would be desirable to enable a statistically
significant analysis of the advantage of probabilistic am-
plifiers. To guarantee a fair sampling, the ideal setup
would be to test the amplifier on Gaussian-distributed co-
herent states generated randomly by a heterodyne mea-
surement on one side of a two-mode squeezed state.

The classical limit of quantum amplifiers. For
⇤ ⇥ g� 1, the gap between the quantum fidelity and the
CFT is equal to the gap between entangled and separable
states in the Bell correlation �A⇧  . The gap vanishes in
the limit g ⌃ ⌥, and the fundamental reason is that an
amplifier with infinite gain is classical, like a cloning de-
vice producing infinite clones [37–39]. This point is made
very clear by our results: denoting by Cg,⇤ and by ⇤Cg,⇤ the
optimal quantum amplifier and the optimal measure-and-
prepare amplifier, for ⇤ ⇥ g�1 we have the remarkable re-
lation [33] ⇤Cg,⇤ = A g⇥

g2+(�+1)2
C⌦

g2+(⇤+1)2,⇤
, where A⇥ is

the attenuation channel transforming the coherent state
|� into |⇥� , ⇥ ⇥ 1. In words, the best measure-and-
prepare strategy with gain g is equivalent to the best
quantum strategy with gain g� =

⌅
g2 + (⇤+ 1)2, fol-

lowed by an attenuation of ⇥ = g/
⌅

g2 + (⇤+ 1)2 that
reduces the gain from g� to g. When the desired gain is
large compared to the prior information available (g ⇧ ⇤)
we have g� ⌅ g and ⇥ ⌅ 1, which imply ⇤Cg,⇤ ⌅ Cg,⇤.
In conclusion, we established the ultimate quantum

limits to the deterministic and probabilistic amplification
of Gaussian-distributed coherent states, without making
any assumption on the nature of the amplifier and with-
out making the unrealistic assumption of uniform dis-
tribution over coherent states. For probabilistic ampli-
fiers, we discovered the presence of a critical value of the
expected photon number, below which noiseless amplifi-
cation becomes possible. Furthermore, we provided the
quantum benchmark that has to be surpassed in order to
establish the successful experimental demonstration of a
genuine quantum amplifier. Our results show an intrigu-
ing link between genuine quantum amplification and the
maximization of a suitable Bell-type correlation, and, in
addition, they guarantee that a successful demonstration
is possible for any finite value of the expected photon
number.

Acknowledgments. This work is supported by the
National Basic Research Program of China (973)
2011CBA00300 (2011CBA00301), by the 1000 Youth Fel-
lowship Program of China, and by the National Natural
Science Foundation of China through Grants 61033001
and 61061130540. We acknowledge the support of
Perimeter Institute for Theoretical Physics, where this
work was started. Research at Perimeter Institute for
Theoretical Physics is supported in part by the Govern-
ment of Canada through NSERC and by the Province of
Ontario through MRI. We thank the anonymous referees
for inspiring a significant strengthening of our results, G
Adesso and M Bellini for their advise on the comparison
with experimental works and S Pirandola for comments
on an earlier version of the manuscript.

� Electronic address: gchiribella@mail.tsinghua.edu.cn
† Electronic address: xiejy09@mails.tsinghua.edu.cn
‡ URL: http://iiis.tsinghua.edu.cn

[1] S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77,
513 (2005).

[2] C. Weedbrook, S. Pirandola, R. Garca-Patrón, N.J. Cerf,
T.C. Ralph, J.H. Shapiro and S. Lloyd, Rev. Mod. Phys.
84, 621 (2012).

[3] N. Bergeal, F. Schackert, M. Metcalfe, R. Vijay, V. E.
Manucharyan, L. Frunzio, D. E. Prober, R. J. Schoelkopf,
S. M. Girvin, and M. H. Devoret, Nature 465, 64 (2010).

[4] D. Kinion and J. Clarke, Appl. Phys. Lett. 98, 202503
(2011).

Reasonable choice of    : � � = 3
gives the quantum benchmark

4

Theorem 5 (Benchmark for quantum amplifiers [33])
The CFT for the amplification of Gaussian-distributed
coherent states is given by

⇤Fg,⇤ =
1 + ⇤

1 + ⇤+ g2
(8)

both for deterministic and probabilistic protocols. The
above value is achieved by a heterodyne measurement
P (�̂)d

2�̂
⌅ = |�̂ ��̂|d

2�̂
⌅ followed by the conditional prepa-

ration of the coherent state
��� g�̂
1+⇤

⇥
.

Eqs. 6, 7 and 8 represent good news for experimental
demonstrations: they prove that genuine quantum am-
plification can be demonstrated for every finite value of
the expected photon number. As an illustration, consider
the demonstration of probabilistic amplification provided
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passed by the experiment
(although more data would be 
needed for a conclusive assessment)



MAIN COURSE: 

QUANTUM SUPER-REPLICATION



Copying data
Copying is a fundamental task, 
with applications across the most diverse fields, 
including cryptography, market and technology, biology and art.  

In the quantum world, the no-cloning theorem forbids perfectl replication.
But what are the limits to approximate replication?  



Quantum replication: 
basic definitions

Replication process:  transforms N perfect copies into M  =  M (N)   
                                     approximate copies:

|⇥�⌃⌦N ⇧⇤ | 0
�⌃ ⇥ |⇥�⌃⌦M � ⌅ ⇥,M � N

Quality of the copies measured by the global fidelity:

Reliable replication: lim
N!1

FN!M(N) = 1

FN!M(N) =

Z
d� p(�)

�����0
�|⇥�⇥⌦M(N)

���
2



Replication rates

Replication rate:   

e. g. linear rate ↵ = 1

�N ⇡ const⇥N↵

A rate is achievable iff exists a reliable replication process with that 
rate

�N = M(N)�N



Replication capacity

Replication capacity of a set of states:
↵⇤

= sup{↵ : ↵ is an achievable replication rate}

Deterministic replication
For arbitrary qubit states: ↵⇤ = 1

For qubit states on the 
equator of the Bloch sphere: ↵⇤ = 1

For arbitrary qudit states: ↵⇤ = 1

... WHY?



QUANTUM METROLOGY
BOUNDS ON 

THE REPLICATION CAPACITY



Replicating clocks

Clock states:

|V �|H�

|V �+ |H�⇥
2

|V ⇥ � |H⇥⇤
2

| ti = e�itH | i t 2 R, H† = H

Example: linearly polarized photons/preceding nuclear magnets

| ti = cos(! t) |0i+ sin(! t) |1i



Standard quantum limit

Standard quantum limit (SQL): 
For independently prepared clocks, 
the error scales like the inverse of the number of clocks: 

| ti⌦N

Var(t) ⇡ const

N



Heisenberg limit

With a suitable entangled state the variance scales as

Heisenberg limit:              is the best scaling allowed by quantum mechanics1/N2

Var(t) ⇡ const

N2

�
e�itH ⌦ · · ·⌦ e�itH

�
| i



Ultimate limits on the replication
capacity

Theorem (Chiribella-Yang-Yao, Nature Commun. 2013):
In finite dim, if a set of states contains a subset of clock states, 
then the replication capacity is upper bounded as  

↵⇤  1 for deterministic processes 

for probabilistic processes and ↵⇤  2

Corollary: deterministic processes can only produce a negligible 
amount of replicas. 
No physical process can reliably replicate quantum information 
at a rate faster than quadratic. 



ACHIEVING THE HEISENBERG 
LIMIT



Quadratic speedup in replication

For quantum clock states

there exists a probabilistic copy machine that obtains fidelity

FN!M = 1�O


exp

✓
�constant ⇥ N2

M

◆�

The fidelity tends to 1 whenever M is of order smaller than N2

faster than any inverse polynomial.



Super-replication

For clock states, one can probabilistically embezzle from Nature 
a number of extra-copies that is large compared to N

Super-replication: replication at rate   ↵ � 1

Example: a probabilistic process can transform N = 100 linearly 
polarized photons into 1000 copies with fidelity F= 99.9% 
The best deterministic process can only achieve F = 57%



Replicating entanglement
Arbitrary maximally entangled states can be super-replicated
probabilistically        

|�U i := (U ⌦ I) |�i

↵⇤ = 2



Universal super-replication?

Can we find a universal super-replicator?  
a process that super-replicates arbitrary pure states?

No!   No advantage in using probabilistic processes for the 
replication of arbitrary pure states.
Replication of arbitrary pure states obeys the 
standard quantum limit (replication rate <1)

circle:
super-replication
is possible

sphere:
super-replication
is impossible



RATE VS PROBABILITY:
THE TRADEOFF



Strong converse of the metrology 
bounds
Unfortunately, nothing comes for free...

Super-replication comes with a curse: 
small probability of success. 

How small? 

Theorem (Chiribella, Yang, Yao 2013) 
For rate                        , 
the success probability must vanish compared to  

↵ = 1 + ✏
exp[�N ✏

]

Otherwise, the fidelity will go to zero.
For                the fidelity goes to zero (no matter what)� > 1

� < 1



DESSERT:
REPLICATION OF
UNITARY GATES



Replicating unitary gates

Problem: build up a quantum network that 
                 simulates M uses of a gate
                 by using it only N times.

8x 2 X

A B
⇡U⌦N

x

U⌦M(N)
x



Replicating phase shift gates

Dür, Sekataski, Skotiniotis (PRL 2015)  
Deterministic super-replication of phase shift gates

↵⇤ = 2

For gates of the form    

a deterministic network can obtain replication capacity  

Ut = e�itH

Is it possible to replicate arbitrary gates?



Universal super-replication

Theorem (Chiribella, Yang, Huang, PRL 2015)
For every finite-dimensional quantum system
there exists a deterministic, universal network
that achieves replication capacity                  
for arbitrary unitary gates.
The quadratic replication rate is optimal:
every quantum network replicating gates at rate > 2
will necessarily have zero fidelity on most inputs.

↵⇤ = 2

No contradiction with the no-cloning theorem:  
the gate U cannot be extracted deterministically from the 
state | U i := U | i



Super-generation of 
maximally entangled states 

Using an unknown unitary gate U for N times 
one can generate deterministically M>N approximate 
copies of the maximally entangled state

|�U i := (U ⌦ I) |�i

with fidelity

3

protocol scales like M �N +O
�

N1�↵/2� (Appendix B).
For M growing faster than N2, the fidelity tends to zero.

In summary, given N uses of a completely unknown
gate, our network simulates up to N2 uses with high fi-
delity on most input states. The simulation works with
probability exponentially close to 1, but can fail on some
specific inputs: notably, it fails for inputs of the i.i.d.
form |'i⌦M , for which the fidelity with the desired out-
put state is zero. The fact that replication works well
in the typical case is analog to other phenomena based
on measure concentration, such as quantum equilibration
[31] and entanglement typicality [32].

State cloning vs state generation. Deterministic gate
replication is not in contradiction with the asymptotic
no-cloning theorem. Indeed, suppose that we wanted to
use gate replication to clone a completely unknown pure
state | i = U

 

|0i for some fixed state |0i. To this pur-
pose, we would have to retrieve the gate U

 

from the
input state | i—a task whose deterministic execution is
forbidden by the no-programming theorem [33]. Since
the state | i is arbitrary, a symmetry argument precludes
the conversion | i ! U

 

even probabilistically [19].
Though gate replication cannot be used for state

cloning, it may still provide an advantage in the less de-
manding task of state generation, which consists in pro-
ducing M copies of the state | i from N uses of the
gate U

 

. The advantage does not show up in the uni-
versal case, because universal gate replication does not
reproduce correctly the action of the gate U⌦M

 

on the

i.i.d. input state |0i⌦M . However, it does show up in
non-universal cases: for example, Ref. [22] demonstrated
that N uses of a phase gate allow one to generate up to
N2 copies of the corresponding phase state. Similarly, we
show that universal gate replication allows to generateM
maximally entangled states with fidelity

F ent
gen[N ! M ] � 1� 2(M + 1) exp



�N2

2M

�

(8)

(Appendix C). The protocol for generating entangled
states also provides an alternative way to generate phase
states: given N uses of a phase gate with phase ✓ one
can first generate M � N approximate copies of the
maximally entangled state (|0i|0i + e�i✓|1i|1i)/

p
2 and

then apply a CNOT gate to each copy and discard the
second qubit of the pair, thus obtaining M � N approx-
imate copies of the state (|0i + e�i✓|1i)/

p
2. We refer

to the ability to produce M � N states from N � 1
uses of the corresponding gate as state super-generation.
Again, we stress that state super-generation does not
challenge the asymptotic no-cloning theorem, because N
uses of a gate cannot be obtained deterministically from
N copies of the corresponding state. In the concrete ex-
amples of phase states and maximally entangled states,
the fidelity of the best deterministicN -to-M cloner scales
as (N/M)1/2 and as (N/M)3/2, respectively [34], clearly
preventing the production ofM � N high-fidelity clones.

Probabilistic cloning of maximally entangled states and

the optimality of universal gate replication. The map
U
g

! |�
g

i is a one-to-one correspondence between qubit
gates and two-qubit maximally entangled states [35, 36].
The inverse map |�

g

i ! U
g

is implemented by proba-
bilistic teleportation, which succeeds with optimal prob-
ability 1/4 [37, 38]. Combined with the super-generation
of entangled states, the implementability of the map
|�

g

i ! U
g

implies that N maximally entangled states
can be cloned probabilistically, obtaining up to N2 high
fidelity copies, albeit with exponentially small probabil-
ity 1/4N . The result is interesting not only because it
provides an explicit protocol achieving super-replication
of maximally entangled states, but also because it allows
one to prove the optimality of the gate super-replication
protocol: if there existed a protocol producing M � N2

almost perfect copies of a generic unitary gate, such a
protocol could be converted into a probabilistic cloning
protocol producing M � N2 almost perfect copies of a
generic maximally entangled state. Such a protocol is
impossible because it would violate the Heisenberg limit
for quantum cloning [19]. Even more strongly, since the
fidelity of state replication must vanish for M � N2 [19],
every gate replication protocol simulating M � N2 uses
must have vanishing entanglement fidelity, and, there-
fore, vanishing fidelity on most input states. This con-
clusion applies both to deterministic and probabilistic
gate replication protocols.

Gate compression. The argument used to prove gate
super-replication can also be applied to the task of gate
compression, whose goal is to encode the action of a gate
U
x

into another gate U 0
x

acting on a smaller physical sys-
tem. Gate compression protocols are useful in distributed
scenarios wherein a server (Alice) is required to apply the
gate U

x

to an input state provided by a client (Bob). In
such a task, it is natural to minimize the total amount of
communication between client and server, by compress-
ing the gate U

x

into a gate acting on the smallest possi-
ble system. Ideally, the compression should be faithful,
in the sense that the action of U

x

on the original input
state is simulated without errors. In practice, Alice and
Bob can often tolerate a small error, especially if this
allows them to increase the compression rate.
The general form of a gate compression protocol is

illustrated in Figure 2. Here we consider the scenario
where U

x

is an N -qubit gate of the i.i.d. form U⌦N

g

,
U
g

being an arbitrary rotation of the Bloch sphere. The
case of rotations around a fixed axis has been previously
considered in [22]. Using the decomposition of Eq. (1),
the gate U⌦N

g

can be put in the block diagonal form

U⌦N

g

=
L

N/2
j=0

⇣

U
(j)
g

⌦ IMjN

⌘

, where U
(j)
g

is a unitary

gate acting on the representation space R
j

and IMjN is
the identity on the multiplicity space M

jN

. The work-
ing principle of the compression protocol is to get rid of
the multiplicity spaces, on which the gate U⌦N

g

acts triv-
ially. Specifically, Bob encodes his N -qubit input into
the state of a composite system AB, where system A has
Hilbert space H

A

=
L

N/2
j=0 R

j

and system B has Hilbert
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Conclusions 

• Breaking the SQL:   Super-replication
   embezzling from Nature a large number of nearly perfect copies.
   Can be done for clock states and max ent states.
 
• Universal gate replication: simulates up to a quadratic number of 
   gate uses without violating the no-cloning theorem.                                    

• Fundamental limits to probabilistic amplification:  
    -optimality of RL08 for Gaussian distributed CS
    -probabilistic benchmarks

• Ultimate limits to the replication rates set by the limits of quantum 
   metrology: 
   SQL: rate <1 for deterministic processes   (negligible extra-copies)  
   HL:   rate <2 for probabilistic processes     (quadratic speed-up)
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• think of qubits as spin 1/2 particles

• define the encoding channel

2

FIG. 1. Quantum network for gate replication. The
network simulates M parallel uses of an unknown unitary
gate U

g

, while querying it only N times. The simulation is
obtained by transforming the input state of M systems into
the joint state of N systems plus an ancilla (via quantum
channel C1), applying the unknown gate on the N systems,
and then recombining them with the ancilla via a quantum
channel C2, which finally produces M output systems.

the rotation axis was fixed and only ✓ was varying.
In order to replicate unknown gates, we consider a net-

work where N parallel uses of U
g

are sandwiched between
two quantum channels, C1 and C2, as in figure 1. The
overall action of the network is described by the channel
C2

�

U⌦N

g

⌦ I
A

�

C1, with U
g

(·) = U
g

·U †
g

and I
A

denoting
the identity on a suitable ancillary system. To construct
the channels C1 and C2, we decompose the Hilbert space
of K qubits (K = N,M) into rotationally invariant sub-
spaces. Choosing K to be even, we have

H ⌦K '
K/2
M

j=0

(R
j

⌦ M
jK

) , (1)

where j is the quantum number of the total angular
momentum, R

j

is a representation space, of dimension
d
j

= 2j + 1, and M
jK

is a multiplicity subspace, of di-
mension m

jK

. The isomorphism in Eq. (1) is called the
Schur transform and can be implemented e�ciently in a
quantum circuit [25, 30]. We now introduce a cuto↵ on
the quantum number j and define the subspace

H
(K)
J

=
M

jJ

(R
j

⌦ M
jK

) . (2)

To compress a state inside this subspace, we use the en-
coding channel defined by

E(K)
J

(⇢) := P
(K)
J

⇢P
(K)
J

+Tr
h⇣

I⌦K � P
(K)
J

⌘

⇢
i

⇢0 (3)

where P
(K)
J

is the projector on H
(K)
J

and ⇢0 is a fixed

density matrix with support in H
(K)
J

. The key observa-
tion is that mostK-qubit states are left nearly unchanged

by the channel E(K)
J

, provided that K is large and J is

large compared to
p
K. Denoting by F

(K,J)
 the fidelity

between a generic K-partite pure state | i and its com-

pressed version E(K)
J

(| ih |), we have the following

Theorem 1. If | i is chosen uniformly at random, then,

for every fixed ✏ > 0, the probability that F (K,J)
 is smaller

than 1� ✏ satisfies the bound

Prob

h

F
(K,J)
 < 1� ✏

i

<
2(K + 1)

✏
exp



�2J2

K

�

. (4)

Proof. By Markov’s inequality, one has

Prob

h

F
(K,J)
 < 1� ✏

i

< (1 � E
⇥

F (K,J)
⇤

)/✏, where

E
⇥

F (K,J)
⇤

is the average of the fidelity over all pure
states. In turn, the average fidelity can be lower
bounded by the entanglement fidelity [26, 27], given

by F
(K,J)
E

= h�2K |
⇣

E(K)
J

⌦ I⌦K

⌘

(|�2K ih�2K |) |�2K i,

where |�2K i is a maximally entangled state in C2K⌦C2K .
The entanglement fidelity satisfies the bound

F
(K,J)
E

�
�

�

�

h�2K |
⇣

P
(K)
J

⌦ I⌦K

⌘

|�2K i
�

�

�

2
=

2

4

X

jJ

d
j

m
jK

2K

3

5

2

where the coe�cients d
j

m
jK

/2K form a probability dis-
tribution, known as the Schur-Weyl measure [28, 29]. For
large K, the Schur-Weyl measure concentrates around

j = 0 [30], yielding the bound F
(K,J)
E

� 1 � 2(K +

1) exp
h

� 2J2

K

i

(Appendix A), which combined with the

previous observations implies Eq. (4).

Let us apply Theorem 1 to gate replication. The theo-
rem guarantees that, except for an exponentially small
fraction, almost all pure M -qubit states are approxi-

mately in a subspace H
(M)
J

with J �
p
M . To achieve

gate replication, we combine this fact with the observa-

tion that for J  N/2, the states in H
(M)
J

can be faith-
fully encoded into H ⌦N ⌦ H

A

, where H
A

the Hilbert
space of a suitable ancilla. The encoding is achieved by
an isometry V

J

that commutes with all rotations, namely

V
J

U⌦M

g

=
�

U⌦N

g

⌦ I
A

�

V
J

8 U
g

2 SU(2) . (5)

We are now ready to specify the channels C1 and C2
in the gate replication network of figure 1. For channel

C1, we choose C1 = V
J

E(M)
J

, where V
J

is the isometric

channel V
J

(·) = V
J

· V †
J

and J is set to J =
lp

N1�↵/4
m

for M growing like N2�↵, ↵ > 0 and to J = N/2 for M
growing like N2 or faster. For channel C2 we choose the
inverse of V

j

, namely

C2(⇢) = V †
J

⇢V
J

+Tr
h⇣

I⌦N � V
J

V †
J

⌘

⇢
i

⇢0 . (6)

The action of the network on a generic M -qubit state U
g

is then given by

C2(U⌦N

g

⌦ I
A

)C1(| ih |) = U⌦M

g

C2C1(| ih |)

= U⌦M

g

E(M)
J

(| ih |) , (7)

the first equality coming from Eq. (5) and the second
from the fact that C2 is the inverse of V

J

. Clearly, Eq.
(7) implies that the fidelity between the output state and

the ideal target U⌦M

g

| i is equal to F (M,J)
 independently

of g. By theorem 1, the fidelity is arbitrarily close to one
on most input states whenever M grows like O(N2�↵).
In this case, the number of ancillary qubits used by the

• consider the fidelity between a generic state

• for a system of K qubits, let
   be the projector on the subspaces with quantum 
   number of the angular momentum less than J 

| i
and its encoded version E(K)

J (| ih |)

Proof idea (qubit case)

P (K)
J
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FIG. 1. Quantum network for gate replication. The
network simulates M parallel uses of an unknown unitary
gate U

g

, while querying it only N times. The simulation is
obtained by transforming the input state of M systems into
the joint state of N systems plus an ancilla (via quantum
channel C1), applying the unknown gate on the N systems,
and then recombining them with the ancilla via a quantum
channel C2, which finally produces M output systems.

the rotation axis was fixed and only ✓ was varying.
In order to replicate unknown gates, we consider a net-

work where N parallel uses of U
g

are sandwiched between
two quantum channels, C1 and C2, as in figure 1. The
overall action of the network is described by the channel
C2

�

U⌦N

g

⌦ I
A

�

C1, with U
g

(·) = U
g

·U †
g

and I
A

denoting
the identity on a suitable ancillary system. To construct
the channels C1 and C2, we decompose the Hilbert space
of K qubits (K = N,M) into rotationally invariant sub-
spaces. Choosing K to be even, we have

H ⌦K '
K/2
M

j=0

(R
j

⌦ M
jK

) , (1)

where j is the quantum number of the total angular
momentum, R

j

is a representation space, of dimension
d
j

= 2j + 1, and M
jK

is a multiplicity subspace, of di-
mension m

jK

. The isomorphism in Eq. (1) is called the
Schur transform and can be implemented e�ciently in a
quantum circuit [25, 30]. We now introduce a cuto↵ on
the quantum number j and define the subspace

H
(K)
J

=
M

jJ

(R
j

⌦ M
jK

) . (2)

To compress a state inside this subspace, we use the en-
coding channel defined by

E(K)
J

(⇢) := P
(K)
J

⇢P
(K)
J

+Tr
h⇣

I⌦K � P
(K)
J

⌘

⇢
i

⇢0 (3)

where P
(K)
J

is the projector on H
(K)
J

and ⇢0 is a fixed

density matrix with support in H
(K)
J

. The key observa-
tion is that mostK-qubit states are left nearly unchanged

by the channel E(K)
J

, provided that K is large and J is

large compared to
p
K. Denoting by F

(K,J)
 the fidelity

between a generic K-partite pure state | i and its com-

pressed version E(K)
J

(| ih |), we have the following

Theorem 1. If | i is chosen uniformly at random, then,

for every fixed ✏ > 0, the probability that F (K,J)
 is smaller

than 1� ✏ satisfies the bound

Prob

h

F
(K,J)
 < 1� ✏

i

<
2(K + 1)

✏
exp
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Proof. By Markov’s inequality, one has

Prob
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F
(K,J)
 < 1� ✏

i

< (1 � E
⇥

F (K,J)
⇤

)/✏, where

E
⇥

F (K,J)
⇤

is the average of the fidelity over all pure
states. In turn, the average fidelity can be lower
bounded by the entanglement fidelity [26, 27], given

by F
(K,J)
E

= h�2K |
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E(K)
J

⌦ I⌦K

⌘

(|�2K ih�2K |) |�2K i,

where |�2K i is a maximally entangled state in C2K⌦C2K .
The entanglement fidelity satisfies the bound
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where the coe�cients d
j

m
jK

/2K form a probability dis-
tribution, known as the Schur-Weyl measure [28, 29]. For
large K, the Schur-Weyl measure concentrates around

j = 0 [30], yielding the bound F
(K,J)
E

� 1 � 2(K +

1) exp
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� 2J2
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(Appendix A), which combined with the

previous observations implies Eq. (4).

Let us apply Theorem 1 to gate replication. The theo-
rem guarantees that, except for an exponentially small
fraction, almost all pure M -qubit states are approxi-

mately in a subspace H
(M)
J

with J �
p
M . To achieve

gate replication, we combine this fact with the observa-

tion that for J  N/2, the states in H
(M)
J

can be faith-
fully encoded into H ⌦N ⌦ H

A

, where H
A

the Hilbert
space of a suitable ancilla. The encoding is achieved by
an isometry V

J

that commutes with all rotations, namely

V
J

U⌦M

g

=
�

U⌦N

g

⌦ I
A

�

V
J

8 U
g

2 SU(2) . (5)

We are now ready to specify the channels C1 and C2
in the gate replication network of figure 1. For channel

C1, we choose C1 = V
J

E(M)
J

, where V
J

is the isometric

channel V
J

(·) = V
J

· V †
J

and J is set to J =
lp

N1�↵/4
m

for M growing like N2�↵, ↵ > 0 and to J = N/2 for M
growing like N2 or faster. For channel C2 we choose the
inverse of V

j

, namely

C2(⇢) = V †
J

⇢V
J

+Tr
h⇣

I⌦N � V
J

V †
J

⌘

⇢
i

⇢0 . (6)

The action of the network on a generic M -qubit state U
g

is then given by

C2(U⌦N

g

⌦ I
A

)C1(| ih |) = U⌦M

g

C2C1(| ih |)

= U⌦M

g

E(M)
J

(| ih |) , (7)

the first equality coming from Eq. (5) and the second
from the fact that C2 is the inverse of V

J

. Clearly, Eq.
(7) implies that the fidelity between the output state and

the ideal target U⌦M

g

| i is equal to F (M,J)
 independently

of g. By theorem 1, the fidelity is arbitrarily close to one
on most input states whenever M grows like O(N2�↵).
In this case, the number of ancillary qubits used by the

✏ > 0

a random state of M qubits can be encoded 
with little error into a subspace with angular momentum
at most          ,
wherein the action of the M gates can be simulated
via the action of           gates

p
M

p
M


