THE ULTIMATE LIMITS OF QUANTUM POSTSELECTION

Giulio Chiribella Tsinghua University, Beijing

joint works with Andrew C-C Yao, Yuxiang Yang, Jinyu Xie, and Cupjin Huang

CEQIP 2015, 18-21 June 2015, Telč, Czech Republic.

Deterministic vs probabilistic

Deterministic world

• Non-orthogonal states cannot be distinguished / cloned

- Coherent light cannot be amplified
- SQL for phase estimation / reference frame alignment with multiple copies

Probabilistic world

- Unambiguous state discrimination / cloning of linearly independent states (Duan-Guo 98)
- Noiseless amplifiers (Ralph-Lund 08)
- HL for phase estimation/ reference frame alignment (Fiurásek 06, Bagan et al 12, Chiribella-Yang-Yao 13)

Ultimate limits and basic laws of probabilistic processes:

- Limits and benchmarks on probabilistic amplifiers
- Limits to the replication of quantum states
- Super-replication of states and gates

APPETIZER:

EXPLORING THE LIMITS OF PROBABILISTIC AMPLIFIERS

Amplifying coherent states of light

Coherent state: $|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$ $\alpha \in \mathbb{C}$

Ideally we wish to transform $|\alpha\rangle$ into $|g\alpha\rangle$, g > 1 ("amplifier gain")

No perfect amplification

The transformation $|\alpha\rangle \rightarrow |g\alpha\rangle \qquad \forall \alpha \in \mathbb{C}$ is not physically realizable.

For good reasons:

- it would violate Heisenberg's uncertainty principle
- it would lead to faster-than-light communication
- it would violate the no-cloning theorem

How can we approximate amplification with a physical process allowed by quantum mechanics?

Approximate deterministic amplification

Parametric amplifier

$$\mathcal{C}_{r}(\rho) = \operatorname{Tr}_{B}\left[e^{r(a^{\dagger}b^{\dagger}-ab)}(\rho \otimes |0\rangle\langle 0|)e^{-r(a^{\dagger}b^{\dagger}-ab)}\right]$$

two-mode squeezing operator

ancillary mode in the vacuum state

For the input $|\alpha\rangle$

the output is a thermal state displaced by

 $g\alpha, \qquad g = \cosh r$

Optimal for suitably chosen values of r (Namiki PRA 2011, Chiribella and Xie PRL 2013).

Noiseless probabilistic amplifiers

Ralph and Lund (2008) propose a probabilistic scheme achieving almost perfect amplification.

$$\mathcal{Q}_N(\rho) = Q_N \,\rho \, Q_N^{\dagger} \quad Q_N := \sum_{n=0}^N \frac{g^n}{g^N} \, |n\rangle \langle n$$

For large N: $Q_N(|\alpha\rangle\langle\alpha|) \approx |g\alpha\rangle\langle g\alpha|$

(while the probability drops exponentially)

Probabilistic amplifiers in the lab

Questions

 How do these experiments compare with amplification strategies based on probabilistic estimation?
 (i.e. what is the relation between amplification and estimation inside the probabilistic world?)

• Is RL08 the optimal probabilistic process for amplification? Or is there an even better amplifier?

Modeling the source

To model the source of coherent states we assume a Gaussian distribution:

$$p_{\lambda}(\alpha) = \lambda e^{-\lambda |\alpha|^2}$$

with this choice the expected photon number is $\,\langle n
angle = 1/\lambda\,$

 λ represents our prior information about the input:

 $\lambda = 0 \implies$ no information

 $\lambda = \infty \quad \Rightarrow \quad \text{complete information}$

The best probabilistic amplifiers

When the prior information is larger than a critical value, nearly perfect amplification becomes possible!

$$F_{g,\lambda}^{prob} = \begin{cases} \frac{\lambda+1}{g^2}, & \lambda \leq g^2 - 1\\ 1 & \lambda > g^2 - 1 \end{cases}$$

critical behavior at the value λ_c^p

$$g^{rob} = g^2 - g^2$$

Above the critical value, the best probabilistic amplifier becomes non-Gaussian and is achieved by RL08 protocol (Chiribella & Xie PRL 2013) Having a non-flat prior is essential.

The best estimation-based amplifier

The best amplifier based on measurement and re-preparation is:

measurement: heterodyne POVM

states re-prepared for outcome
$$lpha$$
 :

Its fidelity is
$$\widetilde{F}_{g,\lambda}^{opt} = \frac{1+\lambda}{1+\lambda+g^2}$$

$$\frac{g}{1+\lambda} \alpha \right\rangle$$

(Chiribella & Xie PRL 2013)

 $P_{\alpha} d^2 \alpha = |\alpha\rangle \langle \alpha| \frac{d^2 \alpha}{\pi}$

Equal to the fidelity of the best deterministic protocol (!) by Namiki, Koashi, Imoto, PRL 08

Application

Experiment designed to demonstrate high-fidelity probabilistic amplification with gain g = 2.

Values tested in the experiment: $|\alpha| \approx 0.4/0.7/1.0$ Experimental fidelities: $F_{exp} \approx 0.99/0.91/0.67$

Reasonable choice of $\lambda\colon\,\lambda=3$ gives the quantum benchmark

 $\widetilde{F}_{g=2,\lambda=3} = 50\%$

passed by the experiment (although more data would be needed for a conclusive assessment)

Nature Photonics 2010

MAIN COURSE:

QUANTUM SUPER-REPLICATION

Copying data

Copying is a fundamental task, with applications across the most diverse fields, including cryptography, market and technology, biology and art.

In the quantum world, the no-cloning theorem forbids perfectl replication. But what are the limits to approximate replication?

Quantum replication: basic definitions

Replication process: transforms N perfect copies into M = M(N) approximate copies:

$$|\psi_{\theta}\rangle^{\otimes N} \mapsto |\Psi_{\theta}'\rangle \approx |\psi_{\theta}\rangle^{\otimes M} \qquad \theta \in \Theta, M \ge R$$

Quality of the copies measured by the global fidelity:

$$F_{N \to M(N)} = \int d\theta \ p(\theta) \ \left| \langle \Psi_{\theta}' | \psi_{\theta} \rangle^{\otimes M(N)} \right|^2$$

Reliable replication:

$$\lim_{N \to \infty} F_{N \to M(N)} = 1$$

Replication rates

Replication rate: $\delta N \approx const \times N^{\alpha}$ $\delta N = M(N) - N$

e.g. linear rate $\alpha = 1$

A rate is achievable iff exists a reliable replication process with that rate

Replication capacity

Replication capacity of a set of states:

 $\alpha^* = \sup\{\alpha : \alpha \text{ is an achievable replication rate}\}$

Deterministic replication For arbitrary qubit states:

$$\alpha^* = 1$$

For qubit states on the equator of the Bloch sphere:

$$\alpha^* = 1$$

For arbitrary qudit states:

$$\alpha^* = 1$$

WHY?

QUANTUM METROLOGY BOUNDS ON THE REPLICATION CAPACITY

Replicating clocks

Clock states:
$$|\psi_t\rangle = e^{-itH} |\psi\rangle$$
 $t \in \mathbb{R}, H^{\dagger} = H$

Example: linearly polarized photons/preceding nuclear magnets $|\psi_t\rangle = \cos(\omega t) |0\rangle + \sin(\omega t) |1\rangle \qquad \frac{|V\rangle + |H\rangle}{\sqrt{2}}$

Standard quantum limit

Standard quantum limit (SQL): For independently prepared clocks, the error scales like the inverse of the number of clocks:

$$\operatorname{Var}(t) \approx \frac{\operatorname{const}}{N}$$

Heisenberg limit

$$\left(e^{-itH}\otimes\cdots\otimes e^{-itH}\right)|\Psi\rangle$$

With a suitable entangled state the variance scales as

$$\operatorname{Var}(t) \approx \frac{\operatorname{const}}{N^2}$$

Heisenberg limit: $1/N^2$ is the best scaling allowed by quantum mechanics

Ultimate limits on the replication capacity

Theorem (Chiribella-Yang-Yao, Nature Commun. 2013): In finite dim, if a set of states contains a subset of clock states, then the replication capacity is upper bounded as

 $\alpha^* \leq 1$ for deterministic processes

and $\alpha^* \leq 2$ for probabilistic processes

Corollary: deterministic processes can only produce a negligible amount of replicas. No physical process can reliably replicate quantum information at a rate faster than quadratic.

ACHIEVING THE HEISENBERG LIMIT

Quadratic speedup in replication

For quantum clock states

there exists a probabilistic copy machine that obtains fidelity

$$F_{N \to M} = 1 - O\left[\exp\left(-\text{constant} \times \frac{N^2}{M}\right)\right]$$

The fidelity tends to 1 whenever M is of order smaller than N^2 faster than any inverse polynomial.

Super-replication

For clock states, one can probabilistically embezzle from Nature a number of extra-copies that is large compared to N

Super-replication: replication at rate $\alpha \ge 1$

Example: a probabilistic process can transform N = 100 linearly polarized photons into 1000 copies with fidelity F= 99.9% The best deterministic process can only achieve F = 57%

Replicating entanglement

Arbitrary maximally entangled states can be super-replicated probabilistically $\alpha^* = 2$

$$|\Phi_U\rangle := (U \otimes I) |\Phi\rangle$$

Universal super-replication?

Can we find a universal super-replicator? a process that super-replicates arbitrary pure states?

No! No advantage in using probabilistic processes for the replication of arbitrary pure states. Replication of arbitrary pure states obeys the standard quantum limit (replication rate <1)

> circle: super-replication is possible

sphere:
super-replication
is impossible

RATE VS PROBABILITY: THE TRADEOFF

Strong converse of the metrology bounds

Unfortunately, nothing comes for free...

Super-replication comes with a curse: small probability of success.

How small?

Theorem (Chiribella, Yang, Yao 2013) For rate $\alpha = 1 + \epsilon$, $\epsilon < 1$ the success probability must vanish compared to $\exp[-N^{\epsilon}]$ Otherwise, the fidelity will go to zero. For $\epsilon > 1$ the fidelity goes to zero (no matter what)

DESSERT: LICATION OF REPI UNITARY GATES

三重県津市高野尾町一七八一番地

山梨県都留市桂町

小寶

保

谱

孝

E

12

市城東

X

成二

+

年

-

月初午建之

十年十月吉日建之 年 十月吉日建之 一月吉日建之 月吉日建之 月吉日残之 日建之

Replicating unitary gates

Problem: build up a quantum network that simulates M uses of a gate by using it only N times.

Replicating phase shift gates

Dür, Sekataski, Skotiniotis (PRL 2015) Deterministic super-replication of phase shift gates

For gates of the form $U_t = e^{-itH}$

a deterministic network can obtain replication capacity

$$\alpha^* = 2$$

Is it possible to replicate arbitrary gates?

Universal super-replication

Theorem (Chiribella, Yang, Huang, PRL 2015) For every finite-dimensional quantum system there exists a deterministic, universal network that achieves replication capacity $\alpha^* = 2$ for arbitrary unitary gates. The quadratic replication rate is optimal: every quantum network replicating gates at rate > 2 will necessarily have zero fidelity on most inputs.

No contradiction with the no-cloning theorem: the gate U cannot be extracted deterministically from the state $|\psi_U\rangle := U |\psi\rangle$

Super-generation of maximally entangled states

Using an unknown unitary gate U for N times one can generate deterministically M>N approximate copies of the maximally entangled state

 $\left|\Phi_{U}\right\rangle := \left(U\otimes I\right)\left|\Phi\right\rangle$

with fidelity

 $F_{\text{gen}}^{\text{ent}}[N \to M] \ge 1 - 2(M+1) \exp\left[-\frac{N^2}{2M}\right]$

CONCLUSIONS

Conclusions

- Fundamental limits to probabilistic amplification:
 -optimality of RL08 for Gaussian distributed CS
 -probabilistic benchmarks
- Ultimate limits to the replication rates set by the limits of quantum metrology:
 SQL: rate <1 for deterministic processes (negligible extra-copies)
 HL: rate <2 for probabilistic processes (quadratic speed-up)
- Breaking the SQL: Super-replication embezzling from Nature a large number of nearly perfect copies. Can be done for clock states and max ent states.
- Universal gate replication: simulates up to a quadratic number of gate uses without violating the no-cloning theorem.

THANK YOU FOR YOUR ATTENTION!

RECRUITMENT PROGRAM OF GLOBAL EXPERTS

National Natural Science Foundation of China

FOUNDATIONAL QUESTIONS INSTITUTE

Proof idea (qubit case)

- think of qubits as spin 1/2 particles
- for a system of K qubits, let $P_J^{(K)}$ be the projector on the subspaces with quantum number of the angular momentum less than J
- define the encoding channel

$$\mathcal{E}_J^{(K)}(\rho) := P_J^{(K)} \rho P_J^{(K)} + \operatorname{Tr}\left[\left(I^{\otimes K} - P_J^{(K)} \right) \rho \right] \rho_0$$

• consider the fidelity between a generic state $|\Psi\rangle$ and its encoded version $\mathcal{E}_J^{(K)}(|\Psi\rangle\langle\Psi|)$

Proof idea, cont'd

• Theorem If $|\Psi\rangle$ is chosen uniformly at random, then for every $\epsilon > 0$ one has

$$\operatorname{Prob}\left[F_{\Psi}^{(K,J)} < 1 - \epsilon\right] < \frac{2(K+1)}{\epsilon} \exp\left[-\frac{2J^2}{K}\right]$$

a random state of *M* qubits can be encoded with little error into a subspace with angular momentum at most \sqrt{M} , wherein the action of the M gates can be simulated via the action of \sqrt{M} gates