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Part 1: Infering causal structures



Is obesity contagious?

Empirical finding: People of similar weight more likely to be friends.

Various possible explanations:
I Prefer friends with

similar body
constitution.

I Immitate eating
habits of friends.

I “Obesity is
contagious”

I Unobserved common
cause.
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Interventions

Causal relationships can be probed by interventions:

Compare

Pr[friends | same weight]

Pr[friends | do(same weight)]

Pr[do(friends) |weight].



Passive Causal Inference?

However:

I Interventions often impractical / unethical

Natural Question:
Can one obtain information about causal relations from em-
pirical observations?



Causal structures
To address problem, formalize notions:

I For n variables X1, . . . ,Xn,

I a causal structure or
Bayesian network is directed
acyclic graph,

I with ith variable
deterministic function

Xi = fi (pai , ui )

of its parents pai and “local
randomness” ui

Chain rule of probability ⇒ joint p.d.f. is

p(x1, . . . , xi ) = Πn
i=1P(xi |pai , ui ).
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Local Markov Condition

A causal structure gives rise to dis-
tributions where,

I Xi is independent of its
non-descendants, given its
parents.

I I.e. dependency on “past”
only through parents.

⇒ criterion for rejecting causal structures. E.g.:

I if “wiping” found to be not independent of “cold” given
“sneezing”
⇒ above structure can’t explain data.

Empirical independences hold clues about causation.
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Local Markov Condition
Causal structure does imply testable conditions

Ex.:

I “wiping” independent of
“cold” conditioned on
“sneazing”.

More generally:

I Xi is independent of its
non-descendants, given its
parents.

I “Local Markov Condition”.

Result:
(1) All corollaries of causal structures follow from Local
Markov Conditions.
(2) Recoverable aspects of causality graph well-understood.

[Pearl, 2000]
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Hidden variables (confounders / latent variables)

. . . however, analysis breaks down if only subset of variables
accessible.

Ex.: “common ancestor” problem:

A

B

A

B CC

I Pair-wise structure implies no independences between A,B,C ,

I but is not compatible, e.g. with 3 perfectly correlated coins.

I (amazingly, this example not yet fully characterized).
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Algebraic Statistics

A

B

A

B CC

I Independences = algebraic
constraints

p(x , y) = p(x)p(y)

⇔ rank(p(x , y)) = 1

I Rank variety + Positivity
= real algebraic geometry

I Nasty in theory and pratice. . .

I . . . so new ideas needed.
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Part 2: Entropic Marginals



1. Entropy cone
Step 1/3: The unconstrained, global object.

I Associate with S ⊂ {1, . . . , n} the
joint entropy S(XS)

I ⇒ an entropy vector v ∈ R2n ,
indexed by subsets
Ex.:

(
H(∅),H(A),H(B),H(A,B)

)

I Easy proof: Set of all such entropy
vectors forms convex cone Γ∗n (up
to closure).

I Structure not fully understood, but. . .

I . . . contained in Shannon cone cone Γn, defined by strong
subadditivity and monotonicity.

H(A,B) ≤ H(A,B,C ), H(A,B) ≤ H(A)+H(B), I (B : C |A) ≥ 0.

I We will mostly work with Shannon relaxation.
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2. Causal constraints

Step 2/3: Now choose candidate structure and add causal
constraints.

I That’s easy:
Conditional independences measured by
mutual information:

I ({wipe} : {hay, cold}|{sneeze}) = 0.

I Can even relax:

I ({wipe} : {hay, cold}|{sneeze}) ≤ ε.

I ⇒ cone C of constraints.

⇒ new global cone Γn ∩ C of entropies subject to causal structure.
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3. Marginalize
Step 3/3: Marginalize.

I Set M⊂ 2{1,...,n} of jointly observable r.v.’s is marginal
scenario.

I Classically: r.v.’s either observable or not
QM: Some r.v.’s not jointly measureable.

Marginalize to M:
I Geometrically trivial:

just restrict Γn ∩ C to observable
coordinates.

I Algorithmically costly: Γn ∩ C
represented in terms of inequalities
(use, e.g. Fourier-Motzkin
elimination)

Final result: description of marginal, causal, entropy cone(
Γn ∩ C )|M in terms of “entropic Bell inequalities”.
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1. Relation Entropy & Binary Bell Ineqs
Revisit “entropic CHSH” [Braunstein & Caves ’88 (!)]

〈XAXB〉+ 〈YAXB〉+ 〈YAYB〉 − 〈XAYB〉 ≤ 〈XA〉+ 〈XB〉
− H(XAXB)− H(YAXB)− H(YAYB) + H(XAYB) ≥ −H(XA)− H(XB)

I Measures frustration in degree of correlation, rather than sign.

I Resembles “sign-reversed” CHSH. No coincidence. . .

I Result: Negative of any multipartite entropic ineq also valid
for probabilities. [NJP ’13]

I Often, converse true ⇒ Source of entropic Bell ineqs [NJP ’13]
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2. Common Ancestors & Strength of Causal Influence

A

B

A

B CC

I Entropic constraints given by (perms of)

B = I (A : B) + I (A : C )− H(A) ≤ 0.

I Ex.: Perfectly correlated coins: B = 1.

I Violation B interpretable as causal strength of direct influence
A→ B required to explain data [UAI ’14]

I Def. causal strength CA→B as relative entropy distance
incurred by cutting link.

I Then CA→B ≥ B. [UAI ’14]
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3. Many more. . .
Can treat. . .

I Scenarios of n observables with independent common
ancestors influencing at most M each

I Direction of causation from pairwise marginals

. . . and more.
[UAI ’14]



Part 3: Quantum Causal Stuctures



Quantum Causal Structures 1

A

B

A

B CC

I With minor modifications, causal diagrams make sense for
quantum systems.

I Nodes are states. Labels desginate systems.

I If node has incoming edges, state results from CP map
applied to incoming systems.

I Sample diagram says

ρABC =
[
ΦA1A2→A⊗ΦB1B2→B⊗ΦC1C2→C

]
(ρA1B2⊗ρA2C2⊗ρB2C2C ).
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Quantum Causal Structures 2

How to build entropic constraints for quantum causal structures:
1. Use von Neumann entropy
⇒ drop monotonicity ineq. H(A,B) ≥ H(A)

2. QM does not assign joint state to input &
output of operation! No “H(A1,A)”!
Consider only coexisting variables!

3. Use data processing inequality to relate
non-coexisting variables. Ex.:

I (A : B) ≤ I (A1A2 : B1B2).

. . . gives rich theory [Nat. Comm. ’14].
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Quantum Causal Structures Ex.: Information Causality

Recall inf. caus. game: [Pawlowski et al., Nature ’09]

I Alices receives bits X1, . . . ,Xn, sends message M to Bob

I Bob recives M and challenge S → outputs guess Y for XS

I Aided by joint quantum state ρAB

Original inequality:∑
s

I (Xs : Y |S = s) ≤ H(M)

Strengthening using systematic “quantum causal structures” prot.:

I (X1 : Y1,M)+I (X2 : Y2,M)+I (X1 : X2|Y2,M) ≤ H(M)+I (X1 : X2).
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Part 4: Relaxations of causal assumptions in Bell
scenarios



Relaxations of causal assumptions in Bell scenarios

In this part:

I Do not work with entropies.

But show how. . .

I . . . graphical notation of causality make it easy to reason
about relaxations of causal assumptions.

I . . . the idea of quantifying “causal influence” is fruitful for Bell
scenarios.



Relaxations of causal assumptions in Bell scenarios

Constraints encoded by Bell causal struc-
ture have names:

I Locality

p(b|x , y , λ) = p(b|y , λ).

I Measurement independence

p(x , y , λ) = p(x)p(y)p(λ).

How much do we need to relax the causal assumptions en-
tering in Bell’s theorem to explain “non-local correlations”
classically?
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Relaxations

I Ingredient 1: More general causal structures

I Ingredient 2: Quantitative measures of causal strength



Relaxations

I Ingredient 1: More general causal structures

I Ingredient 2: Quantitative measures of causal strength

Meas. CA→B used here: Maximal change in total variational
distance incurred by manually changing A:

CA→B = sup
a,a′

∑
λ

p(λ)
∣∣p(b|do(a), λ)− p(b|do(a′), λ)

∣∣



Results

Main Result
Quantitative minimum of relaxation necessary to classically
explain observed data can often be cast as a linear program.
Moreover, closed-form results can often be obtained using
duality theory.
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I Causal interpretation of numerical CHSH violation:

min CA→B = min CX→B = max{0,CHSH}



Results

Main Result
Quantitative minimum of relaxation necessary to classically
explain observed data can often be cast as a linear program.
Moreover, closed-form results can often be obtained using
duality theory.

I Quantitative bound on measurement dependence

minM = max{0, Id/4},

where
M = ‖p(λ, x , y)− p(λ)p(x , y)‖TV

and Id violation of CGLMP-inequality.



Results

Main Result
Quantitative minimum of relaxation necessary to classically
explain observed data can often be cast as a linear program.
Moreover, closed-form results can often be obtained using
duality theory.

I Quantum violations even for classical models that allow for
communication of measurement outcomes!



Summary

I Causal structures and Bell nonlocality go well together

I Independences linear constraints on entropies. . .

I . . . fits the theory well.
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