
Quantum speedup of Monte Carlo methods

Ashley Montanaro Montecarlo

Department of Computer Science,
University of Bristol

18 June 2015

arXiv:1504.06987

Monte Carlo methods

Monte Carlo methods use randomness to estimate numerical
properties of systems which are too large or complicated to
analyse deterministically.

For example, we can approximate π by throwing darts at a
dartboard:

Pr[dart lands in circle] = π
4 .

Monte Carlo methods

Monte Carlo methods use randomness to estimate numerical
properties of systems which are too large or complicated to
analyse deterministically.

For example, we can approximate π by throwing darts at a
dartboard:

Pr[dart lands in circle] = π
4 .

Monte Carlo methods

Monte Carlo methods use randomness to estimate numerical
properties of systems which are too large or complicated to
analyse deterministically.

For example, we can approximate π by throwing darts at a
dartboard:

Pr[dart lands in circle] = π
4 .

Darts landed in circle: 1/1.

Approximation to π: 4.0.

Monte Carlo methods

Monte Carlo methods use randomness to estimate numerical
properties of systems which are too large or complicated to
analyse deterministically.

For example, we can approximate π by throwing darts at a
dartboard:

Pr[dart lands in circle] = π
4 .

Darts landed in circle: 6/10.

Approximation to π: 2.4.

Monte Carlo methods

Monte Carlo methods use randomness to estimate numerical
properties of systems which are too large or complicated to
analyse deterministically.

For example, we can approximate π by throwing darts at a
dartboard:

Pr[dart lands in circle] = π
4 .

Darts landed in circle: 82/100.

Approximation to π: 3.28.

Monte Carlo methods

Monte Carlo methods use randomness to estimate numerical
properties of systems which are too large or complicated to
analyse deterministically.

For example, we can approximate π by throwing darts at a
dartboard:

Pr[dart lands in circle] = π
4 .

Darts landed in circle: 788/1000.

Approximation to π: 3.152.

Monte Carlo methods
Monte Carlo methods use randomness to estimate numerical
properties of systems which are too large or complicated to
analyse deterministically.

For example, we can approximate π by throwing darts at a
dartboard:

Pr[dart lands in circle] = π
4 .

Darts landed in circle: 788/1000.

Approximation to π: 3.152.

General problem
Given access to a randomised algorithm A, estimate the
expected output value µ of A.

Classical algorithm

The following natural algorithm solves this problem for any A:

1 Produce k samples v1, . . . , vk, each corresponding to the
output of an independent execution of A.

2 Output the average µ̃ = 1
k
∑k

i=1 vi of the samples as an
approximation of µ.

Assuming that the variance of the output of A is at most σ2,

Pr[|µ̃− µ| > ε] 6
σ2

kε2 .

So we can take k = O(σ2/ε2) to estimate µ up to additive error
ε with, say, 99% success probability.

This scaling is optimal for classical algorithms [Dagum et al. ’00].

To estimate π up to 4 decimal places with success
probability 0.5, we would need > 109 darts!

Classical algorithm

The following natural algorithm solves this problem for any A:

1 Produce k samples v1, . . . , vk, each corresponding to the
output of an independent execution of A.

2 Output the average µ̃ = 1
k
∑k

i=1 vi of the samples as an
approximation of µ.

Assuming that the variance of the output of A is at most σ2,

Pr[|µ̃− µ| > ε] 6
σ2

kε2 .

So we can take k = O(σ2/ε2) to estimate µ up to additive error
ε with, say, 99% success probability.

This scaling is optimal for classical algorithms [Dagum et al. ’00].

To estimate π up to 4 decimal places with success
probability 0.5, we would need > 109 darts!

Classical algorithm

The following natural algorithm solves this problem for any A:

1 Produce k samples v1, . . . , vk, each corresponding to the
output of an independent execution of A.

2 Output the average µ̃ = 1
k
∑k

i=1 vi of the samples as an
approximation of µ.

Assuming that the variance of the output of A is at most σ2,

Pr[|µ̃− µ| > ε] 6
σ2

kε2 .

So we can take k = O(σ2/ε2) to estimate µ up to additive error
ε with, say, 99% success probability.

This scaling is optimal for classical algorithms [Dagum et al. ’00].

To estimate π up to 4 decimal places with success
probability 0.5, we would need > 109 darts!

Classical algorithm

The following natural algorithm solves this problem for any A:

1 Produce k samples v1, . . . , vk, each corresponding to the
output of an independent execution of A.

2 Output the average µ̃ = 1
k
∑k

i=1 vi of the samples as an
approximation of µ.

Assuming that the variance of the output of A is at most σ2,

Pr[|µ̃− µ| > ε] 6
σ2

kε2 .

So we can take k = O(σ2/ε2) to estimate µ up to additive error
ε with, say, 99% success probability.

This scaling is optimal for classical algorithms [Dagum et al. ’00].

To estimate π up to 4 decimal places with success
probability 0.5, we would need > 109 darts!

Classical algorithm

The following natural algorithm solves this problem for any A:

1 Produce k samples v1, . . . , vk, each corresponding to the
output of an independent execution of A.

2 Output the average µ̃ = 1
k
∑k

i=1 vi of the samples as an
approximation of µ.

Assuming that the variance of the output of A is at most σ2,

Pr[|µ̃− µ| > ε] 6
σ2

kε2 .

So we can take k = O(σ2/ε2) to estimate µ up to additive error
ε with, say, 99% success probability.

This scaling is optimal for classical algorithms [Dagum et al. ’00].

To estimate π up to 4 decimal places with success
probability 0.5, we would need > 109 darts!

Quantum speedup

With a quantum computer, we can do better:

Theorem [AM ’15]

There is a quantum algorithm which estimates µ up to
additive error ε with 99% success probability and

Õ(σ/ε)

uses of A.

The Õ notation hides polylog factors: more precisely, the
complexity is O((σ/ε) log3/2(σ/ε) log log(σ/ε)).

This complexity is optimal up to these polylog factors
[Nayak and Wu ’98].

The underlying algorithm A can now be quantum itself.

Quantum speedup

With a quantum computer, we can do better:

Theorem [AM ’15]

There is a quantum algorithm which estimates µ up to
additive error ε with 99% success probability and

Õ(σ/ε)

uses of A.

The Õ notation hides polylog factors: more precisely, the
complexity is O((σ/ε) log3/2(σ/ε) log log(σ/ε)).

This complexity is optimal up to these polylog factors
[Nayak and Wu ’98].

The underlying algorithm A can now be quantum itself.

Quantum speedup

With a quantum computer, we can do better:

Theorem [AM ’15]

There is a quantum algorithm which estimates µ up to
additive error ε with 99% success probability and

Õ(σ/ε)

uses of A.

The Õ notation hides polylog factors: more precisely, the
complexity is O((σ/ε) log3/2(σ/ε) log log(σ/ε)).

This complexity is optimal up to these polylog factors
[Nayak and Wu ’98].

The underlying algorithm A can now be quantum itself.

Quantum speedup

With a quantum computer, we can do better:

Theorem [AM ’15]

There is a quantum algorithm which estimates µ up to
additive error ε with 99% success probability and

Õ(σ/ε)

uses of A.

The Õ notation hides polylog factors: more precisely, the
complexity is O((σ/ε) log3/2(σ/ε) log log(σ/ε)).

This complexity is optimal up to these polylog factors
[Nayak and Wu ’98].

The underlying algorithm A can now be quantum itself.

Related work

This problem connects to several previous works, e.g.:

Approximating the mean of an arbitrary bounded
function (with range [0, 1]), with respect to the uniform
distribution. Quantum complexity: O(1/ε) [Heinrich ’01],
[Brassard et al. ’11].

Estimating the expected value tr(Aρ) of certain
observables A which are bounded [Wocjan et al. ’09], or
whose tails decay quickly [Knill et al. ’07].

Approximating the mean, with respect to the uniform
distribution, of functions with bounded L2 norm [Heinrich
’01]

Here we generalise these by approximating the mean output
value of arbitrary quantum algorithms, given only a bound on
the variance.

Related work

This problem connects to several previous works, e.g.:

Approximating the mean of an arbitrary bounded
function (with range [0, 1]), with respect to the uniform
distribution. Quantum complexity: O(1/ε) [Heinrich ’01],
[Brassard et al. ’11].

Estimating the expected value tr(Aρ) of certain
observables A which are bounded [Wocjan et al. ’09], or
whose tails decay quickly [Knill et al. ’07].

Approximating the mean, with respect to the uniform
distribution, of functions with bounded L2 norm [Heinrich
’01]

Here we generalise these by approximating the mean output
value of arbitrary quantum algorithms, given only a bound on
the variance.

Related work

This problem connects to several previous works, e.g.:

Approximating the mean of an arbitrary bounded
function (with range [0, 1]), with respect to the uniform
distribution. Quantum complexity: O(1/ε) [Heinrich ’01],
[Brassard et al. ’11].

Estimating the expected value tr(Aρ) of certain
observables A which are bounded [Wocjan et al. ’09], or
whose tails decay quickly [Knill et al. ’07].

Approximating the mean, with respect to the uniform
distribution, of functions with bounded L2 norm [Heinrich
’01]

Here we generalise these by approximating the mean output
value of arbitrary quantum algorithms, given only a bound on
the variance.

Related work

This problem connects to several previous works, e.g.:

Approximating the mean of an arbitrary bounded
function (with range [0, 1]), with respect to the uniform
distribution. Quantum complexity: O(1/ε) [Heinrich ’01],
[Brassard et al. ’11].

Estimating the expected value tr(Aρ) of certain
observables A which are bounded [Wocjan et al. ’09], or
whose tails decay quickly [Knill et al. ’07].

Approximating the mean, with respect to the uniform
distribution, of functions with bounded L2 norm [Heinrich
’01]

Here we generalise these by approximating the mean output
value of arbitrary quantum algorithms, given only a bound on
the variance.

Ideas behind the algorithm

The algorithm combines and extends ideas of [Heinrich ’01],
[Brassard et al. ’11], [Wocjan et al. ’09].

Let v(A) be the random variable corresponding to the output
of A.

First, in the special case where v(A) ∈ [0, 1]:

We can write down a quantum algorithm which outputs 1
bit, and whose expected output value is µ.

We then use amplitude estimation to approximate µ up to
additive error ε.

The algorithm uses A O(1/ε) times.

Ideas behind the algorithm

The algorithm combines and extends ideas of [Heinrich ’01],
[Brassard et al. ’11], [Wocjan et al. ’09].

Let v(A) be the random variable corresponding to the output
of A.

First, in the special case where v(A) ∈ [0, 1]:

We can write down a quantum algorithm which outputs 1
bit, and whose expected output value is µ.

We then use amplitude estimation to approximate µ up to
additive error ε.

The algorithm uses A O(1/ε) times.

Ideas behind the algorithm

The algorithm combines and extends ideas of [Heinrich ’01],
[Brassard et al. ’11], [Wocjan et al. ’09].

Let v(A) be the random variable corresponding to the output
of A.

First, in the special case where v(A) ∈ [0, 1]:

We can write down a quantum algorithm which outputs 1
bit, and whose expected output value is µ.

We then use amplitude estimation to approximate µ up to
additive error ε.

The algorithm uses A O(1/ε) times.

Ideas behind the algorithm

Now consider the more general case where v(A) > 0,
E[v(A)2] = O(1).

In this case (based on ideas of [Heinrich ’01]):

Divide up the output values of A into blocks, such that in
the t’th block 2t−1 6 v(A) 6 2t.

Use Õ(1/ε) iterations of the previous algorithm to
estimate the average values of each of the first O(log 1/ε)
blocks, each divided by 2t.
Sum up the results (after rescaling again).

The constraint that E[v(A)2] = O(1) implies that the overall
error is at most ε.

Ideas behind the algorithm

Now consider the more general case where v(A) > 0,
E[v(A)2] = O(1).

In this case (based on ideas of [Heinrich ’01]):

Divide up the output values of A into blocks, such that in
the t’th block 2t−1 6 v(A) 6 2t.

Use Õ(1/ε) iterations of the previous algorithm to
estimate the average values of each of the first O(log 1/ε)
blocks, each divided by 2t.
Sum up the results (after rescaling again).

The constraint that E[v(A)2] = O(1) implies that the overall
error is at most ε.

Ideas behind the algorithm

Now consider the more general case where v(A) > 0,
E[v(A)2] = O(1).

In this case (based on ideas of [Heinrich ’01]):

Divide up the output values of A into blocks, such that in
the t’th block 2t−1 6 v(A) 6 2t.

Use Õ(1/ε) iterations of the previous algorithm to
estimate the average values of each of the first O(log 1/ε)
blocks, each divided by 2t.
Sum up the results (after rescaling again).

The constraint that E[v(A)2] = O(1) implies that the overall
error is at most ε.

Ideas behind the algorithm

The final step is to change the dependence on E[v(A)2] to a
dependence on

Var(v(A)) = E[(v(A) − µ)2] = σ2.

Run A once and use the output m̃ as a guess for µ.
|m̃ − µ| = O(σ) with high probability.

Apply the previous algorithm to the subroutine produced
by subtracting m̃ and dividing by σ, with accuracy O(ε/σ).

Estimate the positive and negative parts separately.

A similar idea works to estimate µ up to relative error ε: if
σ2/µ2 6 B, we can estimate µ up to additive error εE[v(A)]

with Õ(B/ε) uses of A.

Ideas behind the algorithm

The final step is to change the dependence on E[v(A)2] to a
dependence on

Var(v(A)) = E[(v(A) − µ)2] = σ2.

Run A once and use the output m̃ as a guess for µ.
|m̃ − µ| = O(σ) with high probability.

Apply the previous algorithm to the subroutine produced
by subtracting m̃ and dividing by σ, with accuracy O(ε/σ).

Estimate the positive and negative parts separately.

A similar idea works to estimate µ up to relative error ε: if
σ2/µ2 6 B, we can estimate µ up to additive error εE[v(A)]

with Õ(B/ε) uses of A.

Ideas behind the algorithm

The final step is to change the dependence on E[v(A)2] to a
dependence on

Var(v(A)) = E[(v(A) − µ)2] = σ2.

Run A once and use the output m̃ as a guess for µ.
|m̃ − µ| = O(σ) with high probability.

Apply the previous algorithm to the subroutine produced
by subtracting m̃ and dividing by σ, with accuracy O(ε/σ).

Estimate the positive and negative parts separately.

A similar idea works to estimate µ up to relative error ε: if
σ2/µ2 6 B, we can estimate µ up to additive error εE[v(A)]

with Õ(B/ε) uses of A.

Ideas behind the algorithm

The final step is to change the dependence on E[v(A)2] to a
dependence on

Var(v(A)) = E[(v(A) − µ)2] = σ2.

Run A once and use the output m̃ as a guess for µ.
|m̃ − µ| = O(σ) with high probability.

Apply the previous algorithm to the subroutine produced
by subtracting m̃ and dividing by σ, with accuracy O(ε/σ).

Estimate the positive and negative parts separately.

A similar idea works to estimate µ up to relative error ε: if
σ2/µ2 6 B, we can estimate µ up to additive error εE[v(A)]

with Õ(B/ε) uses of A.

Application: partition functions

Consider a (classical) physical system which has state space Ω,
and a Hamiltonian H : Ω→ R specifying the energy of each
configuration x ∈ Ω. Assume that H takes integer values in the
set {0, . . . ,n}.

We want to compute the partition function

Z(β) =
∑
x∈Ω

e−βH(x)

for some inverse temperature β.

Encapsulates some interesting problems:
Physics: The Ising and Potts models
Computer science: counting k-colourings of graphs,
counting matchings (monomer-dimer coverings), . . .

Application: partition functions

Consider a (classical) physical system which has state space Ω,
and a Hamiltonian H : Ω→ R specifying the energy of each
configuration x ∈ Ω. Assume that H takes integer values in the
set {0, . . . ,n}.

We want to compute the partition function

Z(β) =
∑
x∈Ω

e−βH(x)

for some inverse temperature β.

Encapsulates some interesting problems:
Physics: The Ising and Potts models
Computer science: counting k-colourings of graphs,
counting matchings (monomer-dimer coverings), . . .

Application: partition functions

Consider a (classical) physical system which has state space Ω,
and a Hamiltonian H : Ω→ R specifying the energy of each
configuration x ∈ Ω. Assume that H takes integer values in the
set {0, . . . ,n}.

We want to compute the partition function

Z(β) =
∑
x∈Ω

e−βH(x)

for some inverse temperature β.

Encapsulates some interesting problems:
Physics: The Ising and Potts models
Computer science: counting k-colourings of graphs,
counting matchings (monomer-dimer coverings), . . .

Application: partition functions
Goal: estimate Z(β) up to relative error ε, i.e. find Z̃ such that

|Z̃ − Z(β)| 6 εZ(β).

Standard classical approach (e.g. [Stefankovič et al. ’09]):

Write Z(β) as a product E[Y0] . . .E[Y`−1] for random
variables Yi such that

Yi(x) = e−(βi+1−βi)H(x),

where 0 = β0 < β1 < · · · < β` = β, and x is picked from
the Gibbs distribution

πi(x) =
1

Z(βi)
e−βiH(x).

Then sample from the πi distributions to estimate E[Yi].

Application: partition functions
Goal: estimate Z(β) up to relative error ε, i.e. find Z̃ such that

|Z̃ − Z(β)| 6 εZ(β).

Standard classical approach (e.g. [Stefankovič et al. ’09]):

Write Z(β) as a product E[Y0] . . .E[Y`−1] for random
variables Yi such that

Yi(x) = e−(βi+1−βi)H(x),

where 0 = β0 < β1 < · · · < β` = β, and x is picked from
the Gibbs distribution

πi(x) =
1

Z(βi)
e−βiH(x).

Then sample from the πi distributions to estimate E[Yi].

Application: partition functions
Goal: estimate Z(β) up to relative error ε, i.e. find Z̃ such that

|Z̃ − Z(β)| 6 εZ(β).

Standard classical approach (e.g. [Stefankovič et al. ’09]):

Write Z(β) as a product E[Y0] . . .E[Y`−1] for random
variables Yi such that

Yi(x) = e−(βi+1−βi)H(x),

where 0 = β0 < β1 < · · · < β` = β, and x is picked from
the Gibbs distribution

πi(x) =
1

Z(βi)
e−βiH(x).

Then sample from the πi distributions to estimate E[Yi].

Markov chains and rapid mixing

This procedure will be efficient if E[Y2
i]/E[Yi]

2 = O(1).

For any partition function problem such that |Ω| = A,
there is a Chebyshev cooling schedule (sequence of βi’s)
that achieves this with ` = Õ(

√
log A) [Stefankovič et al. ’09].

Implies a classical algorithm using Õ((log A)/ε2) samples.

But how do we sample from the πi distributions?

Classically, we can use rapidly mixing Markov chains.
If the Markov chains have relaxation time τ, we get an
overall classical algorithm using Õ((log A)τ/ε2) steps of
the Markov chains [Stefankovič et al. ’09].

Markov chains and rapid mixing

This procedure will be efficient if E[Y2
i]/E[Yi]

2 = O(1).
For any partition function problem such that |Ω| = A,
there is a Chebyshev cooling schedule (sequence of βi’s)
that achieves this with ` = Õ(

√
log A) [Stefankovič et al. ’09].

Implies a classical algorithm using Õ((log A)/ε2) samples.

But how do we sample from the πi distributions?

Classically, we can use rapidly mixing Markov chains.
If the Markov chains have relaxation time τ, we get an
overall classical algorithm using Õ((log A)τ/ε2) steps of
the Markov chains [Stefankovič et al. ’09].

Markov chains and rapid mixing

This procedure will be efficient if E[Y2
i]/E[Yi]

2 = O(1).
For any partition function problem such that |Ω| = A,
there is a Chebyshev cooling schedule (sequence of βi’s)
that achieves this with ` = Õ(

√
log A) [Stefankovič et al. ’09].

Implies a classical algorithm using Õ((log A)/ε2) samples.

But how do we sample from the πi distributions?

Classically, we can use rapidly mixing Markov chains.
If the Markov chains have relaxation time τ, we get an
overall classical algorithm using Õ((log A)τ/ε2) steps of
the Markov chains [Stefankovič et al. ’09].

Markov chains and rapid mixing

This procedure will be efficient if E[Y2
i]/E[Yi]

2 = O(1).
For any partition function problem such that |Ω| = A,
there is a Chebyshev cooling schedule (sequence of βi’s)
that achieves this with ` = Õ(

√
log A) [Stefankovič et al. ’09].

Implies a classical algorithm using Õ((log A)/ε2) samples.

But how do we sample from the πi distributions?

Classically, we can use rapidly mixing Markov chains.

If the Markov chains have relaxation time τ, we get an
overall classical algorithm using Õ((log A)τ/ε2) steps of
the Markov chains [Stefankovič et al. ’09].

Markov chains and rapid mixing

This procedure will be efficient if E[Y2
i]/E[Yi]

2 = O(1).
For any partition function problem such that |Ω| = A,
there is a Chebyshev cooling schedule (sequence of βi’s)
that achieves this with ` = Õ(

√
log A) [Stefankovič et al. ’09].

Implies a classical algorithm using Õ((log A)/ε2) samples.

But how do we sample from the πi distributions?

Classically, we can use rapidly mixing Markov chains.
If the Markov chains have relaxation time τ, we get an
overall classical algorithm using Õ((log A)τ/ε2) steps of
the Markov chains [Stefankovič et al. ’09].

Rapid mixing via quantum walks

It turns out that the Chebyshev cooling schedule
condition implies that quantum walks can be used to mix
rapidly (mixing time improves from O(τ) to O(

√
τ)),

based on techniques of [Wocjan and Abeyesinghe ’08].

We can then apply quantum mean estimation to also
improve the dependence on ε.

The final quantum complexity is Õ((log A)(
√
τ/ε+ τ)).

Note 1: A similar idea was proposed by [Wocjan et al. ’09].
However, that work needed Z(βi+1)/Z(βi) = Ω(1), which
would require ` = Ω(log A).

Note 2: The Õ((log A)τ) part of the bound is the complexity of
computing the Chebyshev cooling schedule itself.

Rapid mixing via quantum walks

It turns out that the Chebyshev cooling schedule
condition implies that quantum walks can be used to mix
rapidly (mixing time improves from O(τ) to O(

√
τ)),

based on techniques of [Wocjan and Abeyesinghe ’08].

We can then apply quantum mean estimation to also
improve the dependence on ε.

The final quantum complexity is Õ((log A)(
√
τ/ε+ τ)).

Note 1: A similar idea was proposed by [Wocjan et al. ’09].
However, that work needed Z(βi+1)/Z(βi) = Ω(1), which
would require ` = Ω(log A).

Note 2: The Õ((log A)τ) part of the bound is the complexity of
computing the Chebyshev cooling schedule itself.

Rapid mixing via quantum walks

It turns out that the Chebyshev cooling schedule
condition implies that quantum walks can be used to mix
rapidly (mixing time improves from O(τ) to O(

√
τ)),

based on techniques of [Wocjan and Abeyesinghe ’08].

We can then apply quantum mean estimation to also
improve the dependence on ε.

The final quantum complexity is Õ((log A)(
√
τ/ε+ τ)).

Note 1: A similar idea was proposed by [Wocjan et al. ’09].
However, that work needed Z(βi+1)/Z(βi) = Ω(1), which
would require ` = Ω(log A).

Note 2: The Õ((log A)τ) part of the bound is the complexity of
computing the Chebyshev cooling schedule itself.

Rapid mixing via quantum walks

It turns out that the Chebyshev cooling schedule
condition implies that quantum walks can be used to mix
rapidly (mixing time improves from O(τ) to O(

√
τ)),

based on techniques of [Wocjan and Abeyesinghe ’08].

We can then apply quantum mean estimation to also
improve the dependence on ε.

The final quantum complexity is Õ((log A)(
√
τ/ε+ τ)).

Note 1: A similar idea was proposed by [Wocjan et al. ’09].
However, that work needed Z(βi+1)/Z(βi) = Ω(1), which
would require ` = Ω(log A).

Note 2: The Õ((log A)τ) part of the bound is the complexity of
computing the Chebyshev cooling schedule itself.

Rapid mixing via quantum walks

It turns out that the Chebyshev cooling schedule
condition implies that quantum walks can be used to mix
rapidly (mixing time improves from O(τ) to O(

√
τ)),

based on techniques of [Wocjan and Abeyesinghe ’08].

We can then apply quantum mean estimation to also
improve the dependence on ε.

The final quantum complexity is Õ((log A)(
√
τ/ε+ τ)).

Note 1: A similar idea was proposed by [Wocjan et al. ’09].
However, that work needed Z(βi+1)/Z(βi) = Ω(1), which
would require ` = Ω(log A).

Note 2: The Õ((log A)τ) part of the bound is the complexity of
computing the Chebyshev cooling schedule itself.

Example: The ferromagnetic Ising model
We are given as input a graph G = (V,E) with n vertices.

We consider the Ising Hamiltonian (z ∈ {±1}n)

H(z) = −
∑

(u,v)∈E

zuzv.

We want to approximate

Z(β) =
∑

z∈{±1}n

e−βH(z).

Best classical runtime known: Õ(n2/ε2) [Stefankovič ’09]
(if β is small enough)

Quantum runtime: Õ(n3/2/ε+ n2).

Other applications from computer science: counting matchings
(monomer-dimer coverings) and k-colourings.

Example: The ferromagnetic Ising model
We are given as input a graph G = (V,E) with n vertices.

We consider the Ising Hamiltonian (z ∈ {±1}n)

H(z) = −
∑

(u,v)∈E

zuzv.

We want to approximate

Z(β) =
∑

z∈{±1}n

e−βH(z).

Best classical runtime known: Õ(n2/ε2) [Stefankovič ’09]
(if β is small enough)

Quantum runtime: Õ(n3/2/ε+ n2).

Other applications from computer science: counting matchings
(monomer-dimer coverings) and k-colourings.

Example: The ferromagnetic Ising model
We are given as input a graph G = (V,E) with n vertices.

We consider the Ising Hamiltonian (z ∈ {±1}n)

H(z) = −
∑

(u,v)∈E

zuzv.

We want to approximate

Z(β) =
∑

z∈{±1}n

e−βH(z).

Best classical runtime known: Õ(n2/ε2) [Stefankovič ’09]
(if β is small enough)

Quantum runtime: Õ(n3/2/ε+ n2).

Other applications from computer science: counting matchings
(monomer-dimer coverings) and k-colourings.

Summary

There is a quantum algorithm which estimates µ up to
additive error ε with Õ(σ/ε) uses of A.

We can use this to approximate partition functions more
quickly than the best classical algorithms known.

Open problem: Is there a more efficient quantum
algorithm for computing a Chebyshev cooling schedule?

Thanks!

Summary

There is a quantum algorithm which estimates µ up to
additive error ε with Õ(σ/ε) uses of A.

We can use this to approximate partition functions more
quickly than the best classical algorithms known.

Open problem: Is there a more efficient quantum
algorithm for computing a Chebyshev cooling schedule?

Thanks!

Summary

There is a quantum algorithm which estimates µ up to
additive error ε with Õ(σ/ε) uses of A.

We can use this to approximate partition functions more
quickly than the best classical algorithms known.

Open problem: Is there a more efficient quantum
algorithm for computing a Chebyshev cooling schedule?

Thanks!

Summary

There is a quantum algorithm which estimates µ up to
additive error ε with Õ(σ/ε) uses of A.

We can use this to approximate partition functions more
quickly than the best classical algorithms known.

Open problem: Is there a more efficient quantum
algorithm for computing a Chebyshev cooling schedule?

Thanks!

Bonus application: the distance between
probability distributions

Imagine we can sample from probability distributions p
and q on n elements.

We would like to estimate the total variation distance

‖p − q‖ = 1
2

∑
x

|p(x) − q(x)|

up to additive error ε.

Classically, this needs about Ω(n) samples [Valiant ’11].

Quantumly, we can do it using O(
√

n/ε8) samples [Bravyi,
Harrow and Hassidim ’11].

Using quantum mean estimation we improve this to
Õ(
√

n/ε3/2).

Bonus application: the distance between
probability distributions

Imagine we can sample from probability distributions p
and q on n elements.

We would like to estimate the total variation distance

‖p − q‖ = 1
2

∑
x

|p(x) − q(x)|

up to additive error ε.

Classically, this needs about Ω(n) samples [Valiant ’11].

Quantumly, we can do it using O(
√

n/ε8) samples [Bravyi,
Harrow and Hassidim ’11].

Using quantum mean estimation we improve this to
Õ(
√

n/ε3/2).

Bonus application: the distance between
probability distributions

Imagine we can sample from probability distributions p
and q on n elements.

We would like to estimate the total variation distance

‖p − q‖ = 1
2

∑
x

|p(x) − q(x)|

up to additive error ε.

Classically, this needs about Ω(n) samples [Valiant ’11].

Quantumly, we can do it using O(
√

n/ε8) samples [Bravyi,
Harrow and Hassidim ’11].

Using quantum mean estimation we improve this to
Õ(
√

n/ε3/2).

Bonus application: the distance between
probability distributions

We can write ‖p − q‖ = Ex[R(x)], where

R(x) =
|p(x) − q(x)|
p(x) + q(x)

,

and x is drawn from the distribution r = (p + q)/2.

For each x, R(x) can be computed up to accuracy ε using
Õ(

√
n/ε) iterations of amplitude estimation.

Wrapping this within O(1/ε) iterations of the
mean-estimation algorithm, we obtain an overall
algorithm running in time Õ(

√
n/ε3/2).

Bonus application: the distance between
probability distributions

We can write ‖p − q‖ = Ex[R(x)], where

R(x) =
|p(x) − q(x)|
p(x) + q(x)

,

and x is drawn from the distribution r = (p + q)/2.

For each x, R(x) can be computed up to accuracy ε using
Õ(

√
n/ε) iterations of amplitude estimation.

Wrapping this within O(1/ε) iterations of the
mean-estimation algorithm, we obtain an overall
algorithm running in time Õ(

√
n/ε3/2).

Bonus application: the distance between
probability distributions

We can write ‖p − q‖ = Ex[R(x)], where

R(x) =
|p(x) − q(x)|
p(x) + q(x)

,

and x is drawn from the distribution r = (p + q)/2.

For each x, R(x) can be computed up to accuracy ε using
Õ(

√
n/ε) iterations of amplitude estimation.

Wrapping this within O(1/ε) iterations of the
mean-estimation algorithm, we obtain an overall
algorithm running in time Õ(

√
n/ε3/2).

Applications

Some partition function applications:

The ferromagnetic Ising model at high enough
temperature. Quantum runtime: Õ(n3/2/ε+ n2) steps
(compare classical: Õ(n2/ε2) steps).

Counting valid k-colourings of a degree d < k/2 graph on
n vertices. Quantum runtime: Õ(n3/2/ε+ n2) (classical:
Õ(n2/ε2))

Counting matchings (monomer-dimer coverings) of a
graph with n vertices and m edges. Quantum runtime:
Õ(n3/2m1/2/ε+ n2m) (classical: Õ(n2m/ε2))

