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One-way quantum verification
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The theory of cluster-state computation is well-established by now, showing that any BQP circuit
can be modified so it uses only single qubit quantum gates, possibly classically controlled, provided
ample supply of a state known as the "cluster state" - which is a simple to produce stablizer state.

My question is: is a similar notion known for quantum verification - i.e. can one replace QMA
circuits with classically controlled 1-qubit gates, possibly using some "special state"? At least
initially, I'm unclear on why the cluster state can even work in this case.

quantum-computing




It is possible to restrict the QMA verifier to single-qubit measurements and classical pre- and
postprocessing (with randomness) while keeping QMA-completeness.

To see why, take any class of k-local QMA-complete Hamiltonians on qubits. By adding a constant
of order poly(n) and rescaling with a 1/poly(n) factor, the Hamiltonian can be brought into the

form
H=Y wih;,
i

where w; > 0,> . w; =1, and h; = %(Id + P;), where P; is a product of Paulis. Estimating
the smallest eigenvalue of H up to accuracy 1/poly(n) is still QMA-hard.

We can now build a circuit which only uses single-qubit measurements which, given a state |1,b>
accepts with probability 1 — (1| H 1)) (which by construction is between 0 and 1). To this end, first
randomly pick one of the ¢'s according to the distribution w; . Then, measure each of the Paulis in
P;, and take the parity 7 of the outcomes, which is now related to (2| h; |¢) via

(lhily) = 3(1 = (=1)7) € {0,1}.

The circuit now outputs 1 — (1| h; |1), and the output is therefore distributed according to

(Y| H[4).

This is, if we picked a yes-instance of the (QMA-complete) local Hamiltonian problem, there is a
state \gb) such that this verifier will accept with some probability > a, while otherwise any state will
be rejected with probability < b, with @ — b > 1/poly(n). The variant of QMA where the verifier
is restricted to one-qubit measurements is therefore QMA-complete for some 1/poly(n) gap.
Finally, this version of QMA can be amplified using just the conventional amplification techniques
for QMA, which finally proves it is QMA-complete independent of the gap (within the same range as
QMA).

share cite improve this answer answered Sep 3 '12 at 16:38
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Verification?

Solve the problem.
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Check the solution
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How to check a quantum proof?

=, ESMA

Does Arthur need a full
quantum computer?
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Local Hamiltonians

m k-local terms
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Local Hamiltonians
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Local Hamiltonians
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Local Hamiltonians
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Local Hamiltonians

k-local terms "M .

Pauli terms > _cgs
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with probabilistic weights

Pick a random projector,
measure its Paulis.
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Local Hamiltonians
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m a random measurement
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Local Hamiltonians

m k-localterms M m,,
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SeP SeP
m a sum of ZJTSPS
projectors S

with probabilistic weights

m a random measurement 1 qubit at a time: accept/reject
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Measurement based quantum computing (MBQC)

m graph state o ®
creation

(e e o

ecE




Measurement based quantum computing (MBQC)

m graph state o ®
creation

(e e o

IS
@ ¢ o




Measurement based quantum computing (MBQC)

m graph state ‘?
creation

(@cz )
eeE

0
o0 9
o oo



Measurement based quantum computing (MBQC)
m graph state ’ ,_?
creation ‘?
(® CZB)H—)@V H 4?
e

SRR



Measurement based quantum computing (MBQC)

m graph state
creation

(@ CZe)|+)®V
eekE

m the stabilizers

Xj®zf

fESj

VERVERV 0 .
\Q+I2 \ Q-+ \ @+l 00 4 e ND



Measurement based quantum computing (MBQC)

m graph state
creation

(@cz )
eek

m the stabilizers

X; X) Z

fESj

RV



Measurement based quantum computing (MBQC)

m graph state
creation

(@cz )
eek

m the stabilizers

X; X) Z

fESj

RV




Measurement based quantum computing (MBQC)
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Completeness

m Merlin cooperates:
sends a good state,
Arthur computes & verifies
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Completeness & soundness

m Merlin cooperates:
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m Merlin cheats:
sends a bad state/tries to influence the computation



Testing soundness

stabilizer test: verification:
is it a graph state? does the circuit accept?
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Checking completeness

stabilizer test: verification:
is it a graph state? does the circuit accept?
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Testing soundness

stabilizer test: verification:
is it a graph state? does the circuit accept?
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Testing soundness

stabilizer test:
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Testing soundness

stabilizer test:
is it a graph state?

m Merlin cheats:
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verification:
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Testing soundness

stabilizer test: verification:
is it a graph state? does the circuit accept?
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m Pick optimal € & g to maximize the gap.
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The MBQC-based protocol is complete & sound

stabilizer test: verification:
is it a graph state? 1—¢ does the circuit accept?

m It also works for QMA,
(perfect completeness).



More fun with graph states & interactive proofs

m Matthew McKague x
Interactive proofs for BQP L %‘
via self-tested graph states w
13095675

m Joseph Fitzsimons, Thomas Vidick
A multiprover interactive proof system
for the local Hamiltonian problem

1409.0260

m Zhengfeng Ji
Classical Verification of Quantum Proofs
1505.07432




The story continues tomorrow

Friday, 17.6.2016

08:00-08:45 Breakfast

09:00-12:00 MORNING SESSION (chaired by Sergey Filippov)
09:00-09:40 | Miguel Navascues The structure of Matrix Product States
09:40-10:05 C Jed Kaniewski : Self-testing of the singlet: analytic bounds f|
10:05-10:30 C Matthias Kleinmann : Device-independent demonstration th

10:30-11:0408
m 11:00-11:40 Anne Broadbent How to verify a quantum computation
11:40-12:03 * S ati

12:05-12:30 C Thomas Bromley : Robustness of asymmetry and coherenc
12:30-13:30 Lunch

14:00-16:10 AFTERNOON SESSION (chaired by Mario Ziman)
14:00-14:40 | Mark Wilde Trading communication resources in quantum Sh
14:40-15:05 C Giacomo de Palma : Gaussian optimizers in quantum inforn
15:05-15:30 C Julio de Vicente : Simple conditions constraining the set of «
15:30-16:00 Coffee & Refreshment

16:00-18:30 POSTER SESSION

19:00 DINNER (conference room)

19:00-23:00 CIPHER GAME (18:30 registration)
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