quantum proofs by measuring 1 qubit at a time

you can verify

Tomoyuki Morimae

Norbert Schuch

Daniel Nagaj

2016 | 6 | 17 CEQIP Valtice

PRA 93, 022326

restricting the verifier's resources

restricting the verifier's resources

restricting the verifier's resources

One-way quantum verification

13

The theory of cluster-state computation is well-established by now, showing that any BQP circuit can be modified so it uses only single qubit quantum gates, possibly classically controlled, provided ample supply of a state known as the "cluster state" - which is a simple to produce stablizer state.

My question is: is a similar notion known for quantum verification - i.e. can one replace QMA circuits with classically controlled 1-qubit gates, possibly using some "special state"? At least initially, I'm unclear on why the cluster state can even work in this case.

quantum-computing

share cite improve this question

asked Aug 30 '12 at 20:48

Lior Eldar

531 • 2 • 13

It is possible to restrict the QMA verifier to single-qubit measurements and classical pre- and postprocessing (with randomness) while keeping QMA-completeness.

To see why, take any class of k-local QMA-complete Hamiltonians on qubits. By adding a constant of order $\operatorname{poly}(n)$ and rescaling with a $1/\operatorname{poly}(n)$ factor, the Hamiltonian can be brought into the form

$$H = \sum_i w_i h_i \; ,$$

where $w_i > 0$, $\sum_i w_i = 1$, and $h_i = \frac{1}{2}(\operatorname{Id} \pm P_i)$, where P_i is a product of Paulis. Estimating the smallest eigenvalue of H up to accuracy $1/\operatorname{poly}(n)$ is still QMA-hard.

We can now build a circuit which only uses single-qubit measurements which, given a state $|\psi\rangle$, accepts with probability $1-\langle\psi|H|\psi\rangle$ (which by construction is between 0 and 1). To this end, first randomly pick one of the i's according to the distribution w_i . Then, measure each of the Paulis in P_i , and take the parity π of the outcomes, which is now related to $\langle\psi|h_i|\psi\rangle$ via

$$\langle \psi | h_i | \psi
angle = rac{1}{2} (1 \pm (-1)^\pi) \in \{0,1\}$$
 .

The circuit now outputs $1-\langle\psi|h_i|\psi\rangle$, and the output is therefore distributed according to $\langle\psi|H|\psi\rangle$.

This is, if we picked a yes-instance of the (QMA-complete) local Hamiltonian problem, there is a state $|\psi\rangle$ such that this verifier will accept with some probability $\geq a$, while otherwise any state will be rejected with probability $\leq b$, with $a-b>1/\mathrm{poly}(n)$. The variant of QMA where the verifier is restricted to one-qubit measurements is therefore QMA-complete for some $1/\mathrm{poly}(n)$ gap. Finally, this version of QMA can be amplified using just the conventional amplification techniques for QMA, which finally proves it is QMA-complete independent of the gap (within the same range as QMA).

share cite improve this answer

answered Sep 3 '12 at 16:38

1 QMA
quantum proofs & verification

2 Hamiltonians

decomposing & measuring

3 MBQC

universal states, blind QC & witnesses

1 qubit at a time

Verification?

Solve the problem.

Howard Willer

+ 182 + 223 - 314 + 651 - 410 + 245 - 677 - 62 + 3 + 916 - 120 + 874 + 399 - 725 - 58 - 403

= 1500

+ 182 + 223 - 314 + 651

-410 + 245 - 677 - 62

+3+916-120+874

+ 399 - 725 - 58 - 403

= 1500

+ 182 + 223 - 314 + 651

- 410 + 245 - 677 - 62

+3+916-120+874

+ 399 - 725 - 58 - 403

= 1500

Verification?

Check the solution or witness.

[primaryresources.co.uk]

Verification?

Measure the energy of a candidate ground state.

Verification?

Measure the energy of a candidate ground state.

1 How to check a quantum proof?

Does Arthur need a full quantum computer?

NO

1 qubit at a time

measuring the energy of a state

■ *k*-local terms

$$H = \sum_{m=1}^{M} H_m$$

If the ground state energy is

■ k-local terms

$$H = \sum_{m=1}^{M} H_m$$

Pauli basis decomposition.

$$H_m = \sum_{S \in \mathcal{P}} c_S^m S$$

$$S = \mathbb{I} \otimes \sigma_1 \otimes \sigma_2 \otimes \mathbb{I} \otimes \sigma_3 \otimes \cdots$$

- k-local terms $\sum_{m=1}^{M} H_m$
- Pauli terms $\sum c_S^m S$

The eigenvalues are ±1.

$$S = \mathbb{I} \otimes \sigma_1 \otimes \sigma_2 \otimes \mathbb{I} \otimes \sigma_3 \otimes \cdots$$

- $\sum_{m=1}^{M} H_m$ ■ *k*-local terms
- Pauli terms

$$\sum_{S\in\mathcal{D}} c_S^m S$$
 $rac{1}{2} \Big(\mathbb{I} \pm \sigma_1 \otimes \mathbb{I} \otimes \sigma_2 \otimes \cdots \Big)$

$$\frac{1}{2} \left(\mathbb{I} \pm \sigma_1 \otimes \mathbb{I} \otimes \sigma_2 \otimes \cdots \right)$$

Shift by a constant to get projectors.

$$cS = 2c \frac{1}{2} \left(\mathbb{I} + S \right) - c \, \mathbb{I}$$

$$-dS = 2d\frac{1}{2}\left(\mathbb{I} - S\right) - d\,\mathbb{I}$$

•
$$k$$
-local terms $\sum_{m=1}^{M} H_m$

$$\sum_{S \in \mathcal{P}} c_S^m S$$
 $rac{1}{2} \Big(\mathbb{I} \pm \sigma_1 \otimes \mathbb{I} \otimes \sigma_2 \otimes \cdots \Big)$

$$\sum_{S \in \mathcal{P}} 2|d_S|P_S - \mathbb{I}\sum_{S \in \mathcal{P}} |d_S|$$

Convert to a weighted sum of projectors.

$$\frac{1}{\sum_{S} 2|d_S|} \sum_{S \in \mathcal{P}} 2|d_S|P_S$$

• k-local terms
$$\sum_{m=1}^{M} H_m$$

$$\sum_{m=1}^{M} H_m$$

$$\sum_{S \in \mathcal{P}} c_S^m S \qquad \quad rac{1}{2} \Big(\mathbb{I} \pm \sigma_1 \otimes \mathbb{I} \otimes \sigma_2 \otimes \cdots \Big)$$

$$\sum_{S \in \mathcal{P}} 2|d_S|P_S - \mathbb{I}\sum_{S \in \mathcal{P}} |d_S|$$

Convert to a weighted sum of projectors.

$$\frac{1}{\sum_{S} 2|d_{S}|} \sum_{S \in \mathcal{P}} 2|d_{S}| P_{S}$$

• k-local terms
$$\sum_{m=1}^{M} H_m$$

$$\sum_{m=1}^{M} H_m$$

$$\sum_{S \subset \mathcal{D}} c_S^m S$$
 $rac{1}{2} \Big(\mathbb{I} \pm \sigma_1 \otimes \mathbb{I} \otimes \sigma_2 \otimes \cdots \Big)$

$$\sum_{S \in \mathcal{P}} 2|d_S|P_S - \mathbb{I}\sum_{S \in \mathcal{P}} |d_S|$$

a sum of projectors

$$\sum_{S} \pi_{S} P_{S}$$

with probabilistic weights

Pick a random projector, measure its Paulis.

$$r = \frac{1}{2} \bigg(\mathbb{I} \pm \sigma_1 \otimes \mathbb{I} \otimes \sigma_2 \otimes \cdots \bigg)$$

• k-local terms
$$\sum_{m=1}^{M} H_m$$

$$\sum_{m=1}^{M} H_m$$

$$\sum_{S \in \mathcal{P}} c_S^m S \qquad \quad \frac{1}{2} \Big(\mathbb{I} \pm \sigma_1 \otimes \mathbb{I} \otimes \sigma_2 \otimes \cdots \Big)$$

$$\sum_{S \in \mathcal{P}} 2|d_S|P_S - \mathbb{I}\sum_{S \in \mathcal{P}} |d_S|$$

- a sum of $\sum_{S} \pi_{S} P_{S}$ projectors with probabilistic weights
- a random measurement

with expectation value
$$\langle r \rangle = \frac{1}{\sum_S 2|d_S|} \Big(\langle \psi | H | \psi \rangle + \sum_S |d_S| \Big)$$
 accept/reject

• k-local terms
$$\sum_{m=1}^{M} H_m$$

$$\sum_{m=1}^{M} H_m$$

$$\sum_{S \in \mathcal{P}} c_S^m S$$
 $rac{1}{2} \Big(\mathbb{I} \pm \sigma_1 \otimes \mathbb{I} \otimes \sigma_2 \otimes \cdots \Big)$

$$\sum_{S \in \mathcal{P}} 2|d_S|P_S - \mathbb{I}\sum_{S \in \mathcal{P}} |d_S|$$

a sum of projectors

$$\sum_{S} \pi_{S} P_{S}$$

with probabilistic weights

a random measurement 1 qubit at a time: accept/reject

Repetition helps, as
$$p_{\rm acc}^{\rm yes} - p_{\rm acc}^{\rm no} \geqslant \frac{E_b - E_a}{\sum_S 2|d_S|}$$
.

verifying proofs using a graph state

graph state creation

$$\left(\bigotimes_{e\in E}CZ_e\right)|+\rangle^{\otimes|V|}$$

graph state creation

$$\left(\bigotimes_{e\in E}CZ_e\right)|+\rangle^{\otimes|V|}$$

graph state creation

$$\left(\bigotimes_{e\in E}CZ_e\right)|+\rangle^{\otimes|V|}$$

graph state creation

$$\left(\bigotimes_{e\in E}CZ_e\right)|+\rangle^{\otimes|V|}$$

graph state creation

$$\left(\bigotimes_{e\in E}CZ_e\right)|+\rangle^{\otimes|V|}$$

the stabilizers

$$X_j \bigotimes_{i \in S_j} Z_i$$

graph state creation

$$\left(\bigotimes_{e\in E}CZ_e\right)|+\rangle^{\otimes|V|}$$

the stabilizers

$$X_j \bigotimes_{i \in S_j} Z_i$$

graph state creation

$$\left(\bigotimes_{e\in E}CZ_e\right)|+\rangle^{\otimes|V|}$$

the stabilizers

$$X_j \bigotimes_{i \in S_j} Z_i$$

the graph state

$$\left(\bigotimes_{e\in E}CZ_e\right)|+\rangle^{\otimes|V|}$$

the stabilizers

$$X_j \bigotimes_{i \in S_j} Z_i$$

How can you verify that you received this state?

the graph state

$$\left(\bigotimes_{e\in E}CZ_e\right)|+\rangle^{\otimes|V|}$$

the graph state

$$\left(\bigotimes_{e\in E}CZ_e\right)|+\rangle^{\otimes|V|}$$

the graph state

$$\left(\bigotimes_{e\in E}CZ_e\right)|+\rangle^{\otimes|V|}$$

3

Measurement based quantum computing (MBQC)

the graph state

$$\left(\bigotimes_{e\in E}CZ_e\right)|+\rangle^{\otimes|V|}$$

the graph state

$$\left(\bigotimes_{e\in E}CZ_e\right)|+\rangle^{\otimes|V|}$$

send a witness?

the graph state

$$\left(\bigotimes_{e\in E}CZ_e\right)|+\rangle^{\otimes|V|}$$

entangle a witness

the graph state

$$\left(\bigotimes_{e\in E}CZ_e\right)|+\rangle^{\otimes|V|}$$

What are the stabilizers now?

entangle a witness

the graph state

$$\left(\bigotimes_{e\in E}CZ_e\right)|+\rangle^{\otimes|V|}$$

the stabilizers

$$X_j \bigotimes_{i \in S_j} Z_i$$

entangle a witness

3 Completeness

Merlin cooperates:
 sends a good state,
 Arthur computes & verifies

Completeness & soundness

 Merlin cooperates: sends a good state, Arthur computes & verifies

Merlin cheats:
 sends a bad state/tries to influence the computation

3

Testing soundness

Merlin cheats:
 sends a bad state/tries to influence the computation

3 Checking completeness

verification: stabilizer test: does the circuit accept? is it a graph state?

Merlin cooperates: sends a good state, Arthur computes & verifies

$$p_{\rm acc}^{x\in L}\geqslant qa+(1-q)\equiv\alpha$$
 Circuit soundness

stabilizer test: is it a graph state?

verification: does the circuit accept?

Merlin cheats:

 $p_{\text{pass}} \ge 1 - \epsilon$, close to the graph state \rightarrow verification

stabilizer test: is it a graph state?

verification: 1-q does the circuit accept?

■ Merlin cheats: sends a state with $p_{\text{pass}} \ge 1 - \epsilon$

$$p_{\mathrm{acc},1}^{x\notin L}\leqslant q(b+\sqrt{2\epsilon})+(1-q)\equiv\beta_1$$
 not accepted by the Girovit

stabilizer test: is it a graph state?

verification:
does the circuit accept?

■ Merlin cheats: sends a pretty bad state with $p_{pass} < 1 - \epsilon$

$$p_{\mathrm{acc},2}^{x \notin L} < q + (1-q)(1-\epsilon) \equiv \beta_2$$
 fools the circuit the s-test

stabilizer test:

verification: is it a graph state? 1-q does the circuit accept?

Pick optimal $\varepsilon \& q$ to maximize the gap.

$$p_{\mathrm{acc}}^{x \in L} - p_{\mathrm{acc}}^{x \notin L} \geqslant \Delta(q^*, \epsilon) = \frac{\epsilon(a - b - \sqrt{2\epsilon})}{1 + \epsilon - b - \sqrt{2\epsilon}} \geqslant \frac{1}{48|x|^2}$$

The MBQC-based protocol is complete & sound

■ It also works for QMA₁ (perfect completeness).

More fun with graph states & interactive proofs

Matthew McKague Interactive proofs for BQP via self-tested graph states 1309.5675

- Joseph Fitzsimons, Thomas Vidick A multiprover interactive proof system for the local Hamiltonian problem 1409.0260
- Zhengfeng Ji Classical Verification of Quantum Proofs 1505.07432

The story continues tomorrow

Friday, 17.6.2016

- 08:00-08:45 Breakfast
- 09:00-12:00 MORNING SESSION (chaired by Sergey Filippov)
- 09:00-09:40 | Miguel Navascues The structure of Matrix Product States \equiv
- 09:40-10:05 C Jed Kaniewski: Self-testing of the singlet: analytic bounds fi
- 10:05-10:30 C Matthias Kleinmann: Device-independent demonstration th

噩

hati

- 10:30-11:0
- 11:00-11:40 Anne Broadbent How to verify a quantum computation
 - 11:40-12:05 Chris
 - 12:05-12:30 C Thomas Bromley: Robustness of asymmetry and coherence
 - 12:30-13:30 Lunch
 - 14:00-16:10 AFTERNOON SESSION (chaired by Mario Ziman)
 - 14:00-14:40 | Mark Wilde Trading communication resources in quantum Sh
 - 14:40-15:05 C Giacomo de Palma: Gaussian optimizers in quantum inform
 - 15:05-15:30 C Julio de Vicente: Simple conditions constraining the set of
 - 15:30-16:00 Coffee & Refreshment
 - 16:00-18:30 POSTER SESSION
 - 19:00 DINNER (conference room)
 - 19:00-23:00 CIPHER GAME (18:30 registration)

restricting the verifier's resources

sequential 1 qubit measurements

you can verify quantum proofs by measuring 1 qubit at a time

Tomoyuki Morimae

Norbert Schuch

Daniel Nagaj

2016 | 6 | 17 CEQIP Valtice

PRA 93, 022326

