Trading resources in quantum Shannon theory

Mark M. Wilde

Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana, USA

mwilde@lsu.edu

Based on arXiv:1605.04922, 1206.4886, 1105.0119, 1004.0458, 1001.1732, 0901.3038, 0811.4227 (with Bradler, Guha, Hayden, Hsieh, Qi, Touchette) and Chapter 25 of arXiv:1106.1445

CEQIP 2016, June 17, Valtice, Czech Republic

Mark M. Wilde (LSU)

• Question: What are the net rates at which a sender and receiver can generate classical communication, quantum communication, and entanglement by using a channel many times?

- Question: What are the net rates at which a sender and receiver can generate classical communication, quantum communication, and entanglement by using a channel many times?
- Many special cases are known, such as the classical capacity theorem [Hol98, SW97], quantum capacity theorem
 [Sch96, SN96, BNS98, BKN00, Llo97, Sho02, Dev05], and the entanglement-assisted classical capacity theorem [BSST02]

- Question: What are the net rates at which a sender and receiver can generate classical communication, quantum communication, and entanglement by using a channel many times?
- Many special cases are known, such as the classical capacity theorem [Hol98, SW97], quantum capacity theorem
 [Sch96, SN96, BNS98, BKN00, Llo97, Sho02, Dev05], and the entanglement-assisted classical capacity theorem [BSST02]
- A priori, this question might seem challenging, but there is a surprisingly simple answer for several channels of interest:

- Question: What are the net rates at which a sender and receiver can generate classical communication, quantum communication, and entanglement by using a channel many times?
- Many special cases are known, such as the classical capacity theorem [Hol98, SW97], quantum capacity theorem
 [Sch96, SN96, BNS98, BKN00, Llo97, Sho02, Dev05], and the entanglement-assisted classical capacity theorem [BSST02]
- A priori, this question might seem challenging, but there is a surprisingly simple answer for several channels of interest:
 Just combine a single protocol with teleportation, super-dense coding, and entanglement distribution

Background — resources

Mark M. Wilde (LSU)

Background — resources

Resources [Ben04, DHW04, DHW08]

• Let $[c \rightarrow c]$ denote a noiseless classical bit channel from Alice (sender) to Bob (receiver), which performs the following mapping on a qubit density operator

$$\rho = \begin{bmatrix} \rho_{00} & \rho_{01} \\ \rho_{10} & \rho_{11} \end{bmatrix} \rightarrow \begin{bmatrix} \rho_{00} & 0 \\ 0 & \rho_{11} \end{bmatrix}$$

(日) (同) (三) (三)

• Let $[c \rightarrow c]$ denote a noiseless classical bit channel from Alice (sender) to Bob (receiver), which performs the following mapping on a qubit density operator

$$\rho = \begin{bmatrix} \rho_{00} & \rho_{01} \\ \rho_{10} & \rho_{11} \end{bmatrix} \rightarrow \begin{bmatrix} \rho_{00} & 0 \\ 0 & \rho_{11} \end{bmatrix}$$

• Let [q o q] denote a noiseless quantum bit channel from Alice to Bob, which perfectly preserves a qubit density operator.

• Let $[c \rightarrow c]$ denote a noiseless classical bit channel from Alice (sender) to Bob (receiver), which performs the following mapping on a qubit density operator

$$\rho = \begin{bmatrix} \rho_{00} & \rho_{01} \\ \rho_{10} & \rho_{11} \end{bmatrix} \rightarrow \begin{bmatrix} \rho_{00} & 0 \\ 0 & \rho_{11} \end{bmatrix}$$

- Let [q → q] denote a noiseless quantum bit channel from Alice to Bob, which perfectly preserves a qubit density operator.
- Let [qq] denote a noiseless ebit shared between Alice and Bob, which is a maximally entangled state $|\Phi^+\rangle_{AB} = (|00\rangle_{AB} + |11\rangle_{AB})/\sqrt{2}$.

(日) (周) (三) (三)

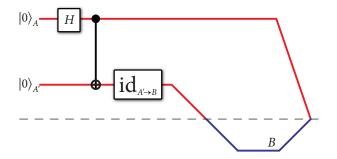
• Let $[c \rightarrow c]$ denote a noiseless classical bit channel from Alice (sender) to Bob (receiver), which performs the following mapping on a qubit density operator

$$\rho = \begin{bmatrix} \rho_{00} & \rho_{01} \\ \rho_{10} & \rho_{11} \end{bmatrix} \rightarrow \begin{bmatrix} \rho_{00} & 0 \\ 0 & \rho_{11} \end{bmatrix}$$

- Let [q → q] denote a noiseless quantum bit channel from Alice to Bob, which perfectly preserves a qubit density operator.
- Let [qq] denote a noiseless ebit shared between Alice and Bob, which is a maximally entangled state $|\Phi^+\rangle_{AB} = (|00\rangle_{AB} + |11\rangle_{AB})/\sqrt{2}$.
- Entanglement distribution, super-dense coding, and teleportation are non-trivial protocols for combining these resources

소리가 소문가 소문가 소문가 ...

Entanglement distribution

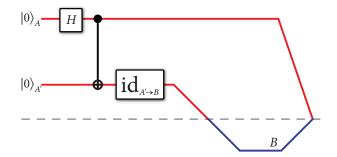


æ

Image: A matrix

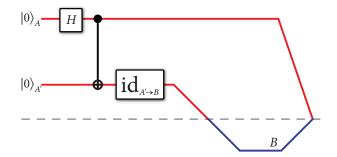
< Ξ > < Ξ >

Entanglement distribution



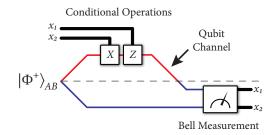
• Alice performs local operations (the Hadamard and CNOT) and consumes one use of a noiseless qubit channel to generate one noiseless ebit $|\Phi^+\rangle_{AB}$ shared with Bob.

Entanglement distribution



- Alice performs local operations (the Hadamard and CNOT) and consumes one use of a noiseless qubit channel to generate one noiseless ebit $|\Phi^+\rangle_{AB}$ shared with Bob.
- Resource inequality: $[q
 ightarrow q] \geq [qq]$

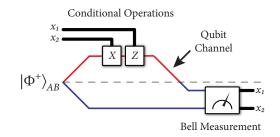
Super-dense coding [BW92]



æ

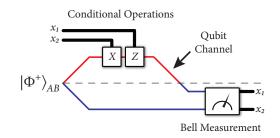
イロト イヨト イヨト イヨト

Super-dense coding [BW92]



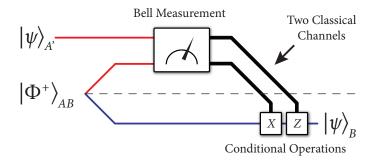
Alice and Bob share an ebit. Alice would like to transmit two classical bits x₁x₂ to Bob. She performs a Pauli rotation conditioned on x₁x₂ and sends her share of the ebit over a noiseless qubit channel. Bob then performs a Bell measurement to get x₁x₂.

Super-dense coding [BW92]



- Alice and Bob share an ebit. Alice would like to transmit two classical bits x₁x₂ to Bob. She performs a Pauli rotation conditioned on x₁x₂ and sends her share of the ebit over a noiseless qubit channel. Bob then performs a Bell measurement to get x₁x₂.
- Resource inequality: $[q
 ightarrow q] + [qq] \geq 2[c
 ightarrow c]$

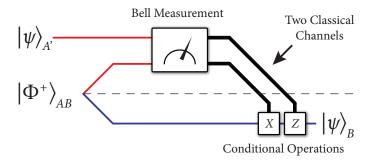
Teleportation [BBC⁺93]



æ

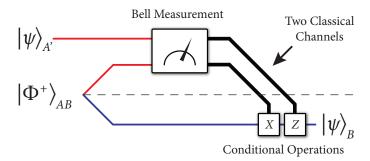
イロト イヨト イヨト イヨト

Teleportation [BBC⁺93]



• Alice would like to transmit an arbitrary quantum state $|\psi\rangle_{A'}$ to Bob. Alice and Bob share an ebit before the protocol begins. Alice can "teleport" her quantum state to Bob by consuming the entanglement and two uses of a noiseless classical bit channel.

Teleportation [BBC⁺93]



- Alice would like to transmit an arbitrary quantum state $|\psi\rangle_{A'}$ to Bob. Alice and Bob share an ebit before the protocol begins. Alice can "teleport" her quantum state to Bob by consuming the entanglement and two uses of a noiseless classical bit channel.
- Resource inequality: $2[c
 ightarrow c] + [qq] \ge [q
 ightarrow q]$

Mark M. Wilde (LSU)

æ

イロト イヨト イヨト イヨト

• Think of each protocol as a rate triple (C, Q, E)

7 / 31

- Think of each protocol as a rate triple (C, Q, E)
- Entanglement distribution is (0, -1, 1)

イロト イポト イヨト イヨト

- Think of each protocol as a rate triple (C, Q, E)
- Entanglement distribution is (0, -1, 1)
- Super-dense coding is (2, -1, -1)

イロト イポト イヨト イヨト

- Think of each protocol as a rate triple (C, Q, E)
- Entanglement distribution is (0, -1, 1)
- Super-dense coding is (2, -1, -1)
- Teleportation is (-2, 1, -1)

イロト イポト イヨト イヨト

- Think of each protocol as a rate triple (C, Q, E)
- Entanglement distribution is (0, -1, 1)
- Super-dense coding is (2, -1, -1)
- Teleportation is (-2, 1, -1)
- All achievable rate triples are then given by

 $\{(C, Q, E) = \alpha(-2, 1, -1) + \beta(2, -1, -1) + \gamma(0, -1, 1) : \alpha, \beta, \gamma \ge 0\}$

イロン イ団と イヨン ト

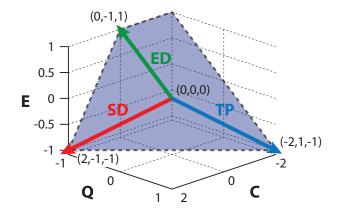
- Think of each protocol as a rate triple (C, Q, E)
- Entanglement distribution is (0, -1, 1)
- Super-dense coding is (2, -1, -1)
- Teleportation is (-2, 1, -1)
- All achievable rate triples are then given by

$$\{(C, Q, E) = \alpha(-2, 1, -1) + \beta(2, -1, -1) + \gamma(0, -1, 1) : \alpha, \beta, \gamma \ge 0\}$$

• Writing as a matrix equation, inverting, and applying constraints $\alpha, \beta, \gamma \geq 0$ gives the following achievable rate region:

$$egin{aligned} \mathcal{L}+\mathcal{Q}+\mathcal{E}&\leq0,\ \mathcal{Q}+\mathcal{E}&\leq0,\ \mathcal{L}+2\mathcal{Q}&\leq0. \end{aligned}$$

Unit resource capacity region [HW10]



The unit resource capacity region is $C + Q + E \le 0$, $Q + E \le 0$, $C + 2Q \le 0$ and is provably optimal.

Mark M. Wilde (LSU)

9 / 31

(日) (同) (三) (三)

Trading resources using a quantum channel

• Main question: What net rates of classical communication, quantum communication, and entanglement generation can we achieve by using a quantum channel N many times?

Trading resources using a quantum channel

- Main question: What net rates of classical communication, quantum communication, and entanglement generation can we achieve by using a quantum channel N many times?
- That is, what are the rates C_{out} , Q_{out} , E_{out} , C_{in} , Q_{in} , $E_{in} \ge 0$ achievable in the following resource inequality?

$$egin{aligned} & \langle \mathcal{N}
angle + \mathcal{C}_{\mathsf{in}}[c o c] + \mathcal{Q}_{\mathsf{in}}[q o q] + \mathcal{E}_{\mathsf{in}}[qq] \ & \geq \mathcal{C}_{\mathsf{out}}[c o c] + \mathcal{Q}_{\mathsf{out}}[q o q] + \mathcal{E}_{\mathsf{out}}[qq] \end{aligned}$$

- Main question: What net rates of classical communication, quantum communication, and entanglement generation can we achieve by using a quantum channel N many times?
- That is, what are the rates C_{out} , Q_{out} , E_{out} , C_{in} , Q_{in} , $E_{in} \ge 0$ achievable in the following resource inequality?

$$egin{aligned} & \langle \mathcal{N}
angle + \mathcal{C}_{\mathsf{in}}[c o c] + \mathcal{Q}_{\mathsf{in}}[q o q] + \mathcal{E}_{\mathsf{in}}[qq] \ & \geq \mathcal{C}_{\mathsf{out}}[c o c] + \mathcal{Q}_{\mathsf{out}}[q o q] + \mathcal{E}_{\mathsf{out}}[qq] \end{aligned}$$

The union of all achievable rate triples
 (C_{out} - C_{in}, Q_{out} - Q_{in}, E_{out} - E_{in}) is called the quantum dynamic capacity region.

Trading resources using a quantum channel

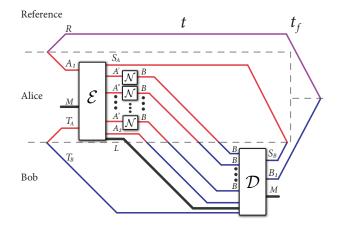


Figure: The most general protocol for generating classical communication, quantum communication, and entanglement with the help of the same respective resources and many uses of a quantum channel.

Background — entropies

Mark M. Wilde (LSU)

æ

<ロト < 団ト < 団ト < 団ト

Background — entropies

• The optimal rates are expressed in terms of entropies, which we review briefly

11 / 31

- The optimal rates are expressed in terms of entropies, which we review briefly
- Given a density operator σ , the quantum entropy is defined as $H(\sigma) = -\operatorname{Tr} \{\sigma \log \sigma\}.$

- The optimal rates are expressed in terms of entropies, which we review briefly
- Given a density operator σ , the quantum entropy is defined as $H(\sigma) = -\operatorname{Tr} \{\sigma \log \sigma\}.$
- Given a bipartite density operator ρ_{AB} , the quantum mutual information is defined as

$$I(A; B)_{\rho} = H(A)_{\rho} + H(B)_{\rho} - H(AB)_{\rho}$$

- The optimal rates are expressed in terms of entropies, which we review briefly
- Given a density operator σ , the quantum entropy is defined as $H(\sigma) = -\operatorname{Tr} \{\sigma \log \sigma\}.$
- Given a bipartite density operator ρ_{AB} , the quantum mutual information is defined as

$$I(A; B)_{\rho} = H(A)_{\rho} + H(B)_{\rho} - H(AB)_{\rho}$$

• The coherent information $I(A
angle B)_{
ho}$ is defined as

$$I(A
angle B)_{
ho} = H(B)_{
ho} - H(AB)_{
ho}$$

イロト イポト イヨト イヨト

- The optimal rates are expressed in terms of entropies, which we review briefly
- Given a density operator σ , the quantum entropy is defined as $H(\sigma) = -\operatorname{Tr} \{\sigma \log \sigma\}.$
- Given a bipartite density operator ρ_{AB} , the quantum mutual information is defined as

$$I(A; B)_{
ho} = H(A)_{
ho} + H(B)_{
ho} - H(AB)_{
ho}$$

• The coherent information $I(A
angle B)_{
ho}$ is defined as

$$I(A
angle B)_{
ho} = H(B)_{
ho} - H(AB)_{
ho}$$

• Given a tripartite density operator ρ_{ABC} , the conditional mutual information is defined as

$$I(A; B|C)_{\rho} = H(AC)_{\rho} + H(BC)_{\rho} - H(C)_{\rho} - H(ABC)_{\rho}$$

イロト イポト イヨト イヨト 二日

Quantum dynamic capacity theorem (setup) [WH12]

Mark M. Wilde (LSU)

12 / 31

・ロト ・聞ト ・ ほト ・ ほト

Quantum dynamic capacity theorem (setup) [WH12]

Define the state-dependent region $C_{CQE,\sigma}^{(1)}(\mathcal{N})$ as the set of all rates C, Q, and E, such that

$$C + 2Q \le I(AX; B)_{\sigma},$$

$$Q + E \le I(A \rangle BX)_{\sigma},$$

$$C + Q + E \le I(X; B)_{\sigma} + I(A \rangle BX)_{\sigma}.$$

ヘロン 人間 とくほと くほとう

Define the state-dependent region $C_{CQE,\sigma}^{(1)}(\mathcal{N})$ as the set of all rates C, Q, and E, such that

$$C + 2Q \le I(AX; B)_{\sigma},$$

$$Q + E \le I(A \rangle BX)_{\sigma},$$

$$C + Q + E \le I(X; B)_{\sigma} + I(A \rangle BX)_{\sigma}.$$

The above entropic quantities are with respect to a classical–quantum state σ_{XAB} , where

$$\sigma_{XAB} \equiv \sum_{x} p_X(x) |x\rangle \langle x|_X \otimes \mathcal{N}_{A' \to B}(\phi^{x}_{AA'}),$$

and the states $\phi_{AA'}^{x}$ are pure.

Quantum dynamic capacity theorem (statement) [WH12]

Mark M. Wilde (LSU)

13 / 31

イロト イポト イヨト イヨト

Quantum dynamic capacity theorem (statement) [WH12]

Define $\mathcal{C}_{CQE}^{(1)}(\mathcal{N})$ as the union of the state-dependent regions $\mathcal{C}_{CQE,\sigma}^{(1)}(\mathcal{N})$:

$$\mathcal{C}^{(1)}_{\mathsf{CQE}}(\mathcal{N}) \equiv \bigcup_{\sigma} \mathcal{C}^{(1)}_{\mathsf{CQE},\sigma}(\mathcal{N}).$$

・ロト ・聞 と ・ 臣 と ・ 臣 と … 臣

Define $\mathcal{C}_{CQE}^{(1)}(\mathcal{N})$ as the union of the state-dependent regions $\mathcal{C}_{CQE,\sigma}^{(1)}(\mathcal{N})$: $\mathcal{C}_{CQE}^{(1)}(\mathcal{N}) \equiv \bigcup_{\sigma} \mathcal{C}_{CQE,\sigma}^{(1)}(\mathcal{N}).$

Then the quantum dynamic capacity region $C_{CQE}(\mathcal{N})$ of a channel \mathcal{N} is equal to the following expression:

$$\mathcal{C}_{\mathsf{CQE}}(\mathcal{N}) = \bigcup_{k=1}^{\infty} \frac{1}{k} \mathcal{C}_{\mathsf{CQE}}^{(1)}(\mathcal{N}^{\otimes k}).$$

Define $\mathcal{C}_{CQE}^{(1)}(\mathcal{N})$ as the union of the state-dependent regions $\mathcal{C}_{CQE,\sigma}^{(1)}(\mathcal{N})$: $\mathcal{C}_{CQE}^{(1)}(\mathcal{N}) \equiv \bigcup_{\sigma} \mathcal{C}_{CQE,\sigma}^{(1)}(\mathcal{N}).$

Then the quantum dynamic capacity region $C_{CQE}(\mathcal{N})$ of a channel \mathcal{N} is equal to the following expression:

$$\mathcal{C}_{\mathsf{CQE}}(\mathcal{N}) = \bigcup_{k=1}^{\infty} \frac{1}{k} \mathcal{C}_{\mathsf{CQE}}^{(1)}(\mathcal{N}^{\otimes k}).$$

It is implicit that one should consider states on A'^k instead of A' when taking the regularization.

Mark M. Wilde (LSU)

14 / 31

(日) (同) (三) (三)

Entanglement-assisted classical and quantum communication

Entanglement-assisted classical and quantum communication

• There is a protocol that implements the following resource inequality:

$$\langle \mathcal{N}
angle + rac{1}{2} I(A; E|X)_\sigma \left[qq
ight] \geq rac{1}{2} I(A; B|X)_\sigma \left[q
ightarrow q
ight] + I(X; B)_\sigma \left[c
ightarrow c
ight]$$

Entanglement-assisted classical and quantum communication

• There is a protocol that implements the following resource inequality:

$$\langle \mathcal{N}
angle + rac{1}{2} I(A; E|X)_\sigma \left[qq
ight] \geq rac{1}{2} I(A; B|X)_\sigma \left[q
ightarrow q
ight] + I(X; B)_\sigma \left[c
ightarrow c
ight]$$

where σ_{XABE} is a state of the following form:

$$\sigma_{XABE} \equiv \sum_{x} p_{X}(x) |x\rangle \langle x|_{X} \otimes \mathcal{U}_{A' \to BE}^{\mathcal{N}}(\varphi_{AA'}^{x}),$$

Entanglement-assisted classical and quantum communication

• There is a protocol that implements the following resource inequality:

$$\langle \mathcal{N}
angle + rac{1}{2} I(A; E|X)_\sigma \left[qq
ight] \geq rac{1}{2} I(A; B|X)_\sigma \left[q
ightarrow q
ight] + I(X; B)_\sigma \left[c
ightarrow c
ight]$$

where σ_{XABE} is a state of the following form:

$$\sigma_{XABE} \equiv \sum_{x} p_X(x) |x\rangle \langle x|_X \otimes \mathcal{U}_{A' \to BE}^{\mathcal{N}}(\varphi_{AA'}^x),$$

the states $\varphi_{AA'}^{\times}$ are pure, and $U_{A' \to BE}^{\mathcal{N}}$ is an isometric extension of the channel $\mathcal{N}_{A' \to B}$.

Entanglement-assisted classical and quantum communication

• There is a protocol that implements the following resource inequality:

$$\langle \mathcal{N}
angle + rac{1}{2} I(A; E|X)_\sigma \left[qq
ight] \geq rac{1}{2} I(A; B|X)_\sigma \left[q
ightarrow q
ight] + I(X; B)_\sigma \left[c
ightarrow c
ight]$$

where σ_{XABE} is a state of the following form:

$$\sigma_{XABE} \equiv \sum_{x} p_{X}(x) |x\rangle \langle x|_{X} \otimes \mathcal{U}_{A' \to BE}^{\mathcal{N}}(\varphi_{AA'}^{x}),$$

the states $\varphi_{AA'}^{\times}$ are pure, and $U_{A' \to BE}^{\mathcal{N}}$ is an isometric extension of the channel $\mathcal{N}_{A' \to B}$.

• Combine this with the unit protocols of teleportation, super-dense coding, and entanglement distribution

Mark M. Wilde (LSU)

(日) (同) (三) (三)

• Combining the protocols gives the following set of achievable rates:

$$\begin{bmatrix} C\\Q\\E \end{bmatrix} = \begin{bmatrix} 0 & 2 & -2\\-1 & -1 & 1\\1 & -1 & -1 \end{bmatrix} \begin{bmatrix} \alpha\\\beta\\\gamma \end{bmatrix} + \begin{bmatrix} I(X;B)_{\sigma}\\\frac{1}{2}I(A;B|X)_{\sigma}\\-\frac{1}{2}I(A;E|X)_{\sigma} \end{bmatrix},$$
where $\alpha, \beta, \gamma \ge 0.$

イロト イポト イヨト イヨト

• Combining the protocols gives the following set of achievable rates:

$$\begin{bmatrix} C\\ Q\\ E \end{bmatrix} = \begin{bmatrix} 0 & 2 & -2\\ -1 & -1 & 1\\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} \alpha\\ \beta\\ \gamma \end{bmatrix} + \begin{bmatrix} I(X;B)_{\sigma}\\ \frac{1}{2}I(A;B|X)_{\sigma}\\ -\frac{1}{2}I(A;E|X)_{\sigma} \end{bmatrix},$$

where α , β , $\gamma \ge 0$.

• Inverting the matrix equation, applying the constraints α , β , $\gamma \ge 0$, and using entropy identities gives the following region:

$$egin{aligned} \mathcal{C}+2\mathcal{Q}&\leq \mathcal{I}(\mathcal{A}X;\mathcal{B})_{\sigma},\ \mathcal{Q}+\mathcal{E}&\leq \mathcal{I}(\mathcal{A}ar{\mathcal{B}}\mathcal{X})_{\sigma},\ \mathcal{C}+\mathcal{Q}+\mathcal{E}&\leq \mathcal{I}(X;\mathcal{B})_{\sigma}+\mathcal{I}(\mathcal{A}ar{\mathcal{B}}\mathcal{X})_{\sigma}, \end{aligned}$$

which establishes the achievability part.

Mark M. Wilde (LSU)

æ

イロト イヨト イヨト イヨト

Example: Quantum erasure channel

• Erasure channel is defined as follows:

$$\mathcal{N}^{\varepsilon}(
ho) = (1 - \varepsilon) \,
ho + \varepsilon |e\rangle \langle e|,$$

where ρ is a *d*-dimensional input state, $|e\rangle$ is an erasure flag state orthogonal to all inputs (so that the output space has dimension d + 1), and $\varepsilon \in [0, 1]$ is the erasure probability.

• Erasure channel is defined as follows:

$$\mathcal{N}^{\varepsilon}(
ho) = (1 - \varepsilon) \,
ho + \varepsilon | e \rangle \langle e |,$$

where ρ is a *d*-dimensional input state, $|e\rangle$ is an erasure flag state orthogonal to all inputs (so that the output space has dimension d + 1), and $\varepsilon \in [0, 1]$ is the erasure probability.

• Let $\mathcal{N}^{\varepsilon}$ be a quantum erasure channel with $\varepsilon \in [0, 1/2]$. Then the quantum dynamic capacity region $\mathcal{C}_{CQE}(\mathcal{N}^{\varepsilon})$ is equal to the union of the following regions, obtained by varying $\lambda \in [0, 1]$:

$$egin{aligned} \mathcal{C}+2\mathcal{Q}&\leq (1-arepsilon)\left(1+\lambda
ight)\log d,\ \mathcal{Q}+\mathcal{E}&\leq (1-2arepsilon)\lambda\log d,\ \mathcal{C}+\mathcal{Q}+\mathcal{E}&\leq (1-arepsilon-arepsilon\lambda)\log d. \end{aligned}$$

- 4 回 ト 4 ヨ ト - 4 ヨ ト -

Example: Quantum erasure channel

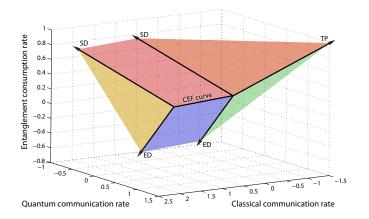


Figure: The quantum dynamic capacity region for the (qubit) quantum erasure channel with $\varepsilon = 1/4$. The plot demonstrates that time-sharing is optimal.

The dynamic capacity region $C_{CQE}(\overline{\Delta}_p)$ of a dephasing channel with dephasing parameter $p \in [0, 1]$ is the set of all C, Q, and E such that

$$egin{aligned} \mathcal{C} + 2 & \mathcal{Q} \leq 1 + h_2(
u) - h_2(\gamma(
u, p)), \ & \mathcal{Q} + \mathcal{E} \leq h_2(
u) - h_2(\gamma(
u, p)), \ & \mathcal{C} + & \mathcal{Q} + \mathcal{E} \leq 1 - h_2(\gamma(
u, p)), \end{aligned}$$

where $\nu \in [0, 1/2]$, h_2 is the binary entropy function, and

$$\gamma(\nu, p) \equiv \frac{1}{2} + \frac{1}{2}\sqrt{1 - 16 \cdot \frac{p}{2}\left(1 - \frac{p}{2}\right)\nu(1 - \nu)}.$$

Example: Qubit dephasing channel

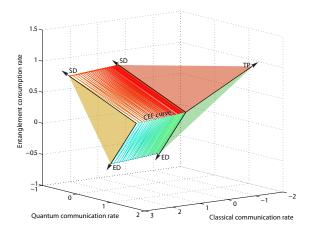


Figure: A plot of the dynamic capacity region for a qubit dephasing channel with dephasing parameter p = 0.2. Slight improvement over time-sharing.

Mark M. Wilde (LSU)

20 / 31

æ

イロト イヨト イヨト イヨト

• Pure-loss channel is defined from the following input-output relation:

$$\hat{a} \rightarrow \hat{b} = \sqrt{\eta} \ \hat{a} + \sqrt{1-\eta} \ \hat{e},$$

where \hat{a} is the input annihilation operator for the sender, \hat{e} is the input annihilation operator for the environment, and $\eta \in [0, 1]$ is the transmissivity of the channel.

• Pure-loss channel is defined from the following input-output relation:

$$\hat{a} \rightarrow \hat{b} = \sqrt{\eta} \ \hat{a} + \sqrt{1-\eta} \ \hat{e},$$

where \hat{a} is the input annihilation operator for the sender, \hat{e} is the input annihilation operator for the environment, and $\eta \in [0, 1]$ is the transmissivity of the channel.

• Place a photon number constraint on the input mode to the channel, such that the mean number of photons at the input cannot be greater than $N_S \in [0, \infty)$.

Example: Pure-loss bosonic channel [WHG12]

Build trade-off codes from an ensemble of the following form:

$$\left\{p_{(1-\lambda)N_{\mathcal{S}}}(\alpha), D_{\mathcal{A}'}(\alpha)|\psi_{\mathsf{TMS}}(\lambda)\rangle_{\mathcal{A}\mathcal{A}'}\right\},\$$

where $\alpha \in \mathbb{C}$,

$$p_{(1-\lambda)N_{S}}(\alpha) \equiv \frac{1}{\pi (1-\lambda) N_{S}} \exp \left\{-\left|\alpha\right|^{2} / \left[(1-\lambda) N_{S}\right]\right\},$$

 $\lambda \in [0, 1]$ is a photon-number-sharing parameter, $D_{A'}(\alpha)$ is a "displacement" unitary operator acting on system A', and $|\psi_{\mathsf{TMS}}(\lambda)\rangle_{AA'}$ is a "two-mode squeezed" (TMS) state:

$$|\psi_{\mathsf{TMS}}(\lambda)\rangle_{\mathcal{AA}'} \equiv \sum_{n=0}^{\infty} \sqrt{\frac{[\lambda N_S]^n}{[\lambda N_S + 1]^{n+1}}} |n\rangle_{\mathcal{A}} |n\rangle_{\mathcal{A}'},$$

The quantum dynamic capacity region for a pure-loss bosonic channel with transmissivity $\eta \ge 1/2$ is the union of regions of the form:

$$egin{aligned} \mathcal{C}+2\mathcal{Q}&\leq g(\lambda \mathcal{N}_{\mathcal{S}})+g(\eta \mathcal{N}_{\mathcal{S}})-g((1-\eta)\,\lambda \mathcal{N}_{\mathcal{S}}),\ \mathcal{Q}+\mathcal{E}&\leq g(\eta\lambda \mathcal{N}_{\mathcal{S}})-g((1-\eta)\,\lambda \mathcal{N}_{\mathcal{S}}),\ \mathcal{C}+\mathcal{Q}+\mathcal{E}&\leq g(\eta \mathcal{N}_{\mathcal{S}})-g((1-\eta)\,\lambda \mathcal{N}_{\mathcal{S}}), \end{aligned}$$

where $\lambda \in [0, 1]$ is a photon-number-sharing parameter and g(N) is the entropy of a thermal state with mean photon number N.

The above holds provided that an unsolved multi-mode minimum-output entropy conjecture is true (see next talk of de Palma for solution of the single-mode version of this conjecture). The region is still achievable if $\eta < 1/2$.

Example: Pure-loss bosonic channel [WHG12]

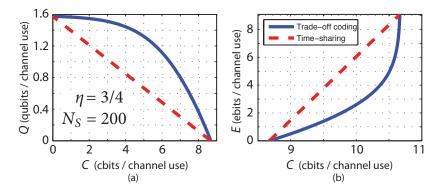


Figure: Suppose channel transmits on average 3/4 of the photons to the receiver, while losing the other 1/4 en route. Take mean photon budget of about 200 photons per channel use at the transmitter. (a) classical-quantum trade-off, (b) classical comm. with rate-limited entanglement consumption. Big gains over time-sharing.

Example: Quantum-limited amplifier channel

Mark M. Wilde (LSU)

24 / 31

æ

イロト イヨト イヨト イヨト

Example: Quantum-limited amplifier channel

• Amplifier channel is defined from the following input-output relation:

$$\hat{a} \rightarrow \hat{b} = \sqrt{G} \ \hat{a} + \sqrt{G-1} \ \hat{e}^{\dagger},$$

where \hat{a} is the input annihilation operator for the sender, \hat{e} is the input annihilation operator for the environment, and $G \in [1, \infty)$ is the gain of the channel. The channel is *quantum-limited* if the environment is prepared in a vacuum state.

- 4月 ト 4 ヨ ト 4 ヨ ト

Example: Quantum-limited amplifier channel

• Amplifier channel is defined from the following input-output relation:

$$\hat{a} \rightarrow \hat{b} = \sqrt{G} \ \hat{a} + \sqrt{G-1} \ \hat{e}^{\dagger},$$

where \hat{a} is the input annihilation operator for the sender, \hat{e} is the input annihilation operator for the environment, and $G \in [1, \infty)$ is the gain of the channel. The channel is *quantum-limited* if the environment is prepared in a vacuum state.

• Place a photon number constraint on the input mode to the channel, such that the mean number of photons at the input cannot be greater than $N_S \in [0, \infty)$.

イロト イポト イヨト イヨト

The quantum dynamic capacity region for a quantum-limited amplifier channel with gain $G \ge 1$ is the union of regions of the form:

$$\begin{split} C+2Q &\leq g(\lambda N_S) + g(GN_S + \bar{G}) - g(\bar{G}[\lambda N_S + 1]), \\ Q+E &\leq g(G\lambda N_S + \bar{G}) - g(\bar{G}[\lambda N_S + 1]), \\ C+Q+E &\leq g(GN_S + \bar{G}) - g(\bar{G}[\lambda N_S + 1]), \end{split}$$

where $\overline{G} = G - 1$ and $\lambda \in [0, 1]$ is a photon-number-sharing parameter and g(N) is the entropy of a thermal state with mean photon number N. (This holds provided that an unsolved single-mode minimum-output entropy conjecture is true.¹)

¹arXiv post [QW16] needs an update

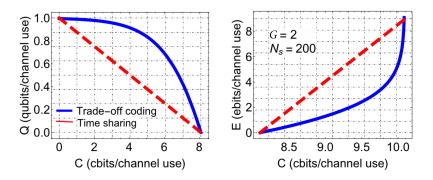


Figure: Suppose channel amplifies with gain G = 2 the photons being transmitted to the receiver. Take mean photon budget of about 200 photons per channel use at the transmitter. (a) classical-quantum trade-off, (b) classical comm. with rate-limited entanglement consumption. Big gains over time-sharing.

Mark M. Wilde (LSU)

Summary

æ

メロト メポト メヨト メヨト

Summary

• The quantum dynamic capacity theorem characterizes the net rates at which a sender and a receiver can generate classical communication, quantum communication, and entanglement by using a quantum channel many times

Summary

- The quantum dynamic capacity theorem characterizes the net rates at which a sender and a receiver can generate classical communication, quantum communication, and entanglement by using a quantum channel many times
- The region simplifies for several channels of interest

Summary

- The quantum dynamic capacity theorem characterizes the net rates at which a sender and a receiver can generate classical communication, quantum communication, and entanglement by using a quantum channel many times
- The region simplifies for several channels of interest

Open questions

Summary

- The quantum dynamic capacity theorem characterizes the net rates at which a sender and a receiver can generate classical communication, quantum communication, and entanglement by using a quantum channel many times
- The region simplifies for several channels of interest

Open questions

 Can we sharpen the theorem? Strong converse bounds, error exponents, finite-length, second-order, etc.

Summary

- The quantum dynamic capacity theorem characterizes the net rates at which a sender and a receiver can generate classical communication, quantum communication, and entanglement by using a quantum channel many times
- The region simplifies for several channels of interest

Open questions

- Can we sharpen the theorem? Strong converse bounds, error exponents, finite-length, second-order, etc.
- What if there is feedback from receiver to sender?

Summary

- The quantum dynamic capacity theorem characterizes the net rates at which a sender and a receiver can generate classical communication, quantum communication, and entanglement by using a quantum channel many times
- The region simplifies for several channels of interest

Open questions

- Can we sharpen the theorem? Strong converse bounds, error exponents, finite-length, second-order, etc.
- What if there is feedback from receiver to sender?
- Is there a simple characterization for distillation tasks? For progress, see [HW10]

References I

- [BBC⁺93] Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William K. Wootters. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. *Physical Review Letters*, 70(13):1895–1899, March 1993.
- [BDH⁺14] Charles H. Bennett, Igor Devetak, Aram W. Harrow, Peter W. Shor, and Andreas Winter. The quantum reverse Shannon theorem and resource tradeoffs for simulating quantum channels. *IEEE Transactions on Information Theory*, 60(5):2926–2959, May 2014. arXiv:0912.5537.
- [Ben04] Charles H. Bennett. A resource-based view of quantum information. *Quantum Information and Computation*, 4:460–466, December 2004.
- [BKN00] Howard Barnum, Emanuel Knill, and Michael A. Nielsen. On quantum fidelities and channel capacities. *IEEE Transactions on Information Theory*, 46(4):1317–1329, July 2000. arXiv:quant-ph/9809010.
- [BNS98] Howard Barnum, M. A. Nielsen, and Benjamin Schumacher. Information transmission through a noisy quantum channel. *Physical Review A*, 57(6):4153–4175, June 1998.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References II

[BSST02] Charles H. Bennett, Peter W. Shor, John A. Smolin, and Ashish V. Thapliyal. Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. *IEEE Transactions on Information Theory*, 48(10):2637–2655, October 2002. arXiv:quant-ph/0106052.

- [BW92] Charles H. Bennett and Stephen J. Wiesner. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. *Physical Review Letters*, 69(20):2881–2884, November 1992.
- [Dev05] Igor Devetak. The private classical capacity and quantum capacity of a quantum channel. IEEE Transactions on Information Theory, 51(1):44–55, January 2005. arXiv:quant-ph/0304127.
- [DHW04] Igor Devetak, Aram W. Harrow, and Andreas Winter. A family of quantum protocols. *Physical Review Letters*, 93(23):239503, December 2004. arXiv:quant-ph/0308044.

[DHW08] Igor Devetak, Aram W. Harrow, and Andreas Winter. A resource framework for quantum Shannon theory. *IEEE Transactions on Information Theory*, 54(10):4587–4618, October 2008. arXiv:quant-ph/0512015.

æ

ヘロト 人間 ト くほ ト くほ トー

References III

- [Hol98] Alexander S. Holevo. The capacity of the quantum channel with general signal states. IEEE Transactions on Information Theory, 44(1):269–273, January 1998. arXiv:quant-ph/9611023.
- [HW10] Min-Hsiu Hsieh and Mark M. Wilde. Trading classical communication, quantum communication, and entanglement in quantum Shannon theory. *IEEE Transactions on Information Theory*, 56(9):4705–4730, September 2010. arXiv:0901.3038.
- [Llo97] Seth Lloyd. Capacity of the noisy quantum channel. Physical Review A, 55(3):1613–1622, March 1997. arXiv:quant-ph/9604015.
- [QW16] Haoyu Qi and Mark M. Wilde. Capacities of quantum amplifier channels. May 2016. arXiv:1605.04922.
- [Sch96] Benjamin Schumacher. Sending entanglement through noisy quantum channels. *Physical Review A*, 54(4):2614–2628, October 1996.
- [Sho02] Peter W. Shor. The quantum channel capacity and coherent information. In *Lecture Notes, MSRI Workshop on Quantum Computation,* 2002.

イロト イヨト イヨト イヨト

- [SN96] Benjamin Schumacher and Michael A. Nielsen. Quantum data processing and error correction. *Physical Review A*, 54(4):2629–2635, October 1996. arXiv:quant-ph/9604022.
- [SW97] Benjamin Schumacher and Michael D. Westmoreland. Sending classical information via noisy quantum channels. *Physical Review A*, 56(1):131–138, July 1997.
- [WH12] Mark M. Wilde and Min-Hsiu Hsieh. The quantum dynamic capacity formula of a quantum channel. *Quantum Information Processing*, 11(6):1431–1463, December 2012. arXiv:1004.0458.
- [WHG12] Mark M. Wilde, Patrick Hayden, and Saikat Guha. Information trade-offs for optical quantum communication. *Physical Review Letters*, 108(14):140501, April 2012. arXiv:1105.0119.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >