
Sampling mixed quantum states
arXiv:1804.04730

Frédéric Dupuis CNRS, LORIA, Nancy, France

Joint work with Philippe Lamontagne, Serge Fehr and Louis Salvail

Sampling

Classical certification

Source

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15
X16 X17 X18 X19 X20 X21 X22 X23 X24 X25 X26 X27 X28 X29 X30
X31 X32 X33 X34 X35 X36 X37 X38 X39 X40 X41 X42 X43 X44 X45
X46 X47 X48 X49 X50 X51 X52 X53 X54 X55 X56 X57 X58 X59 X60

Suppose Xi ∈ {0, 1}. Then, sampling tells us:

• If we only see zeros in the sample whp⇒ we should have at
most δn 1’s in the rest

1/17

Classical certification

Source

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15
X16 X17 X18 X19 X20 X21 X22 X23 X24 X25 X26 X27 X28 X29 X30
X31 X32 X33 X34 X35 X36 X37 X38 X39 X40 X41 X42 X43 X44 X45
X46 X47 X48 X49 X50 X51 X52 X53 X54 X55 X56 X57 X58 X59 X60

Suppose Xi ∈ {0, 1}. Then, sampling tells us:

• If we only see zeros in the sample whp⇒ we should have at
most δn 1’s in the rest

1/17

Classical certification

Source

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15
X16 X17 X18 X19 X20 X21 X22 X23 X24 X25 X26 X27 X28 X29 X30
X31 X32 X33 X34 X35 X36 X37 X38 X39 X40 X41 X42 X43 X44 X45
X46 X47 X48 X49 X50 X51 X52 X53 X54 X55 X56 X57 X58 X59 X60

Suppose Xi ∈ {0, 1}. Then, sampling tells us:

• If we only see zeros in the sample whp⇒ we should have at
most δn 1’s in the rest

1/17

Quantum certification

Source ρ

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15
A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30
A31 A32 A33 A34 A35 A36 A37 A38 A39 A40 A41 A42 A43 A44 A45
A46 A47 A48 A49 A50 A51 A52 A53 A54 A55 A56 A57 A58 A59 A60

• Now, each Ai is a qubit
• Suppose we measure all the qubits in the sample in the
computational basis, get all zeros

• What can we say about the state?

2/17

Quantum certification

Source ρ

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15
A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30
A31 A32 A33 A34 A35 A36 A37 A38 A39 A40 A41 A42 A43 A44 A45
A46 A47 A48 A49 A50 A51 A52 A53 A54 A55 A56 A57 A58 A59 A60

• We can define a low-error subspace

Tε := span
{∣∣∣xn−k1

〉
: xn−k1 has at most εn 1’s

}
• Statement:

tr

[
ρ ΠTε

]
> 1− negl 3/17

Quantum sampling

Source ρ

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15
A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30
A31 A32 A33 A34 A35 A36 A37 A38 A39 A40 A41 A42 A43 A44 A45
A46 A47 A48 A49 A50 A51 A52 A53 A54 A55 A56 A57 A58 A59 A60

• Bouman and Fehr showed that any classical sampling
procedure has a quantum analogue

• This works as long as we’re certifying pure states
• What happens if we want to certify mixed states?

4/17

Certifying mixed states

Source ρ

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15
A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30
A31 A32 A33 A34 A35 A36 A37 A38 A39 A40 A41 A42 A43 A44 A45
A46 A47 A48 A49 A50 A51 A52 A53 A54 A55 A56 A57 A58 A59 A60

• We now want to certify that most positions are in the
mixed state ϕ

• We could measure sampled positions in the diagonal
basis of ϕ, see if we get the right statistics

• This fails: a pure state with the right stats would pass the
test 5/17

Certifying mixed states

• The task is impossible as it stands:
• ϕ⊗n is a mixture of pure states, each of which should fail
the test

• Classically, the task also makes no sense
• Looking at a bitstring, what probability distribution did it
come from?

• It makes sense if we can ask for purifications:

ϕA → |ϕ〉AR

6/17

A mixed state certification protocol

A interactive game between two players: a Prover and a Verifier

Goal
Verifier wants to certify that his state is close to ϕ⊗n. Prover
wants to fool the verifier into thinking he has the right state
even though it’s not the case.

P. Prepare |ϕ〉⊗nAR , send An to verifier.
V. Choose a random sample, announce it to prover.
P. Send R for each position in sample.
V. Measure {|ϕ〉〈ϕ|AR, I− |ϕ〉〈ϕ|AR} for each joint system AR in
sample.

V. Accept if no errors, reject otherwise.

Is this protocol secure? What does it mean to be secure?

7/17

A mixed state certification protocol

A interactive game between two players: a Prover and a Verifier

Goal
Verifier wants to certify that his state is close to ϕ⊗n. Prover
wants to fool the verifier into thinking he has the right state
even though it’s not the case.

P. Prepare |ϕ〉⊗nAR , send An to verifier.
V. Choose a random sample, announce it to prover.
P. Send R for each position in sample.
V. Measure {|ϕ〉〈ϕ|AR, I− |ϕ〉〈ϕ|AR} for each joint system AR in
sample.

V. Accept if no errors, reject otherwise.

Is this protocol secure? What does it mean to be secure?

7/17

A mixed state certification protocol

A interactive game between two players: a Prover and a Verifier

Goal
Verifier wants to certify that his state is close to ϕ⊗n. Prover
wants to fool the verifier into thinking he has the right state
even though it’s not the case.

P. Prepare |ϕ〉⊗nAR , send An to verifier.
V. Choose a random sample, announce it to prover.
P. Send R for each position in sample.
V. Measure {|ϕ〉〈ϕ|AR, I− |ϕ〉〈ϕ|AR} for each joint system AR in
sample.

V. Accept if no errors, reject otherwise.

Is this protocol secure? What does it mean to be secure?
7/17

Applications

This has some applications in cryptography:

• Coin tossing: Alice prepares n EPR pairs, Bob certifies
them, then they measure in the computational basis.

• Caveat: we still get a few errors, no way to get rid of them
⇒ we get a source of min-entropy arbitrarily close to n

• Preparing “magic states” for multiparty computation
protocols

8/17

Defining security

How do we define security? Tempting definition:

• With high probability, the prover could produce
purifications of the remaining systems with at most εn
errors

V.

P.

V.
P.

This definition doesn’t work, because of postselection attacks
9/17

Postselection attacks

Postselection attack
P.
V.

Abort/continue

1. Learns sample
2. Measures qubits
3. Aborts based on
result

Example
Prepare 1√

2 (|00〉+ |11〉)⊗n,
measure positions outside of
sample, abort if result
6= |0〉⊗n−k.

Resulting state always
|0〉⊗n−k

10/17

Postselection attacks

Postselection attack
P.
V.

Abort/continue

1. Learns sample

2. Measures qubits
3. Aborts based on
result

Example
Prepare 1√

2 (|00〉+ |11〉)⊗n,
measure positions outside of
sample, abort if result
6= |0〉⊗n−k.

Resulting state always
|0〉⊗n−k

10/17

Postselection attacks

Postselection attack
P.
V.

Abort/continue

1. Learns sample
2. Measures qubits

3. Aborts based on
result

Example
Prepare 1√

2 (|00〉+ |11〉)⊗n,
measure positions outside of
sample, abort if result
6= |0〉⊗n−k.

Resulting state always
|0〉⊗n−k

10/17

Postselection attacks

Postselection attack
P.
V.

Abort/continue

1. Learns sample
2. Measures qubits
3. Aborts based on
result

Example
Prepare 1√

2 (|00〉+ |11〉)⊗n,
measure positions outside of
sample, abort if result
6= |0〉⊗n−k.

Resulting state always
|0〉⊗n−k

10/17

Postselection attacks

Postselection attack
P.
V.

Abort/continue

1. Learns sample
2. Measures qubits
3. Aborts based on
result

Post-selec
tion

Example
Prepare 1√

2 (|00〉+ |11〉)⊗n,
measure positions outside of
sample, abort if result
6= |0〉⊗n−k.

Resulting state always
|0〉⊗n−k

10/17

Postselection attacks

Postselection attack
P.
V.

Abort/continue

1. Learns sample
2. Measures qubits
3. Aborts based on
result

Post-selec
tion

Example
Prepare 1√

2 (|00〉+ |11〉)⊗n,
measure positions outside of
sample, abort if result
6= |0〉⊗n−k.

Resulting state always
|0〉⊗n−k

10/17

What can the prover do?

An “undetectable” attack
The prover can

• prepare the honest state, up to a few errors,
• prepare a mixture/superposition of such states,
• purify this mixture, and
• post-select on a measurement outcome.

11/17

What can the prover do?

An “undetectable” attack
The prover can

• prepare the honest state, up to a few errors,
• prepare a mixture/superposition of such states,
• purify this mixture, and
• post-select on a measurement outcome.

11/17

What can the prover do?

An “undetectable” attack
The prover can

• prepare the honest state, up to a few errors,
• prepare a mixture/superposition of such states,
• purify this mixture, and
• post-select on a measurement outcome.

|ϕ〉⊗n = |ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉

11/17

What can the prover do?

An “undetectable” attack
The prover can

• prepare the honest state, up to a few errors,
• prepare a mixture/superposition of such states,
• purify this mixture, and
• post-select on a measurement outcome.

|ϕ〉⊗n = |ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉

|ψe〉 = |ϕ〉 |ϕ〉 |ϕ〉|ϕ〉|ϕ〉 |ϕ〉 |ϕ〉 |ϕ
〉 |ϕ〉|ϕ〉|ϕ〉 |ϕ〉 |ϕ〉|ϕ〉 |ϕ
〉 |ϕ〉|ϕ〉

11/17

What can the prover do?

An “undetectable” attack
The prover can

• prepare the honest state, up to a few errors,
• prepare a mixture/superposition of such states,
• purify this mixture, and
• post-select on a measurement outcome.

|ϕ〉⊗n = |ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉|ϕ〉

|ψe〉 = |ϕ〉 |ϕ〉 |ϕ〉|ϕ〉|ϕ〉 |ϕ〉 |ϕ〉 |ϕ
〉 |ϕ〉|ϕ〉|ϕ〉 |ϕ〉 |ϕ〉|ϕ〉 |ϕ
〉 |ϕ〉|ϕ〉

ρAnRn =
∑
e
pe|ψe〉〈ψe|

11/17

What can the prover do?

An “undetectable” attack
The prover can

• prepare the honest state, up to a few errors,
• prepare a mixture/superposition of such states,
• purify this mixture, and
• post-select on a measurement outcome.

· · ·
|ψe〉 = |ϕ〉 |ϕ〉 |ϕ〉|ϕ〉|ϕ〉 |ϕ〉 |ϕ〉 |ϕ

〉 |ϕ〉|ϕ〉|ϕ〉 |ϕ〉 |ϕ〉|ϕ〉 |ϕ
〉 |ϕ〉|ϕ〉

ρAnRn =
∑
e
pe|ψe〉〈ψe|

|Ψ〉AnRnE =
∑

e
√pe|ψe〉AnRn ⊗ |τe〉E

11/17

What can the prover do?

An “undetectable” attack
The prover can

• prepare the honest state, up to a few errors,
• prepare a mixture/superposition of such states,
• purify this mixture, and
• post-select on a measurement outcome.

· · ·
ρAnRn =

∑
e
pe|ψe〉〈ψe|

|Ψ〉AnRnE =
∑

e
√pe|ψe〉AnRn ⊗ |τe〉E

|Ψ̂〉AnRnE = IAn ⊗MRnE|Ψ〉AnRnE
11/17

What can the prover do?

An “undetectable” attack
The prover can

• prepare the honest state, up to a few errors,
• prepare a mixture/superposition of such states,
• purify this mixture, and
• post-select on a measurement outcome.

· · ·
ρAnRn =

∑
e
pe|ψe〉〈ψe|

|Ψ〉AnRnE =
∑

e
√pe|ψe〉AnRn ⊗ |τe〉E

|Ψ̂〉AnRnE = IAn ⊗MRnE|Ψ〉AnRnE

ideal state

11/17

Defining success

Definition (Soundness)
For any strategy for the prover, the output state ρAn of the
verifier is s.t.

ρAn 6 pn · ψAn + σ

where pn is polynomial in n, ψAn is part of an ideal state
|ψ〉AnRnE and tr(σ) ≤ negl(n).

RHS is "rough approximation" of LHS

Application
For any “bad event”,

Pr[bad event | ρAn] ≤ pn Pr[bad event | ψAn] + negl(n)

Secure application if Pr[bad event | ψAn] is negligible.

12/17

Defining success

Definition (Soundness)
For any strategy for the prover, the output state ρAn of the
verifier is s.t.

ρAn 6 pn · ψAn + σ

where pn is polynomial in n, ψAn is part of an ideal state
|ψ〉AnRnE and tr(σ) ≤ negl(n).

RHS is "rough approximation" of LHS

Application
For any “bad event”,

Pr[bad event | ρAn] ≤ pn Pr[bad event | ψAn] + negl(n)

Secure application if Pr[bad event | ψAn] is negligible.

12/17

Main result

Our sampling protocol:

P. Prepare |ϕ〉⊗nAR , send An to verifier.
V. Choose a random sample, announce it to prover.
P. Send R for each position in sample.
V. Measure {|ϕ〉〈ϕ|AR, I− |ϕ〉〈ϕ|AR} for each joint system AR in
sample.

V. Accept if no errors, reject otherwise.

Theorem (Main)
This protocol is sound.

13/17

Proof Tools and Sketch

Permutations and sampling are closely related

Choosing a random subset of size k of a population

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22

is the same as randomly permuting the population and picking
the first k elements

1, 22, 20, 0, 11, 12, 14, 8, 9, 3, 18, 15, 6, 2, 17, 5, 19, 10, 13, 4, 21, 16, 7

Sampling is ''invariant under permutation''.

14/17

Permutations and sampling are closely related

Choosing a random subset of size k of a population

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22

is the same as randomly permuting the population and picking
the first k elements

1, 22, 20, 0, 11, 12, 14, 8, 9, 3, 18, 15, 6, 2, 17, 5, 19, 10, 13, 4, 21, 16, 7

Sampling is ''invariant under permutation''.

14/17

Permutations and sampling are closely related

Choosing a random subset of size k of a population

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22

is the same as randomly permuting the population and picking
the first k elements

1, 22, 20, 0, 11, 12, 14, 8, 9, 3, 18, 15, 6, 2, 17, 5, 19, 10, 13, 4, 21, 16, 7

Sampling is ''invariant under permutation''.

14/17

Permutations and sampling are closely related

Choosing a random subset of size k of a population

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22

is the same as randomly permuting the population and picking
the first k elements

1, 22, 20, 0, 11, 12, 14, 8, 9, 3, 18, 15, 6, 2, 17, 5, 19, 10, 13, 4, 21, 16, 7

Sampling is ''invariant under permutation''.

14/17

Permutation invariance is a powerful tool

• Permutations are bijections of the form

π : {1, . . . ,n} → {1, . . . ,n} e.g. π =

(
12345
53421

)

• Action on H⊗n is

π|ψ1〉|ψ2〉|ψ3〉|ψ4〉|ψ5〉 = |ψ5〉|ψ4〉|ψ2〉|ψ3〉|ψ1〉

• Permutation invariant operators are approximated by
mixtures of i.i.d. operators [CKR09]

ρ = πρπ∗ ∀π =⇒ ρ ≤ p(n)
∫
θ⊗ndθ

= EΘ[Θ
⊗n]

15/17

Permutation invariance is a powerful tool

• Permutations are bijections of the form

π : {1, . . . ,n} → {1, . . . ,n} e.g. π =

(
12345
53421

)

• Action on H⊗n is

π|ψ1〉|ψ2〉|ψ3〉|ψ4〉|ψ5〉 = |ψ5〉|ψ4〉|ψ2〉|ψ3〉|ψ1〉

• Permutation invariant operators are approximated by
mixtures of i.i.d. operators [CKR09]

ρ = πρπ∗ ∀π =⇒ ρ ≤ p(n)
∫
θ⊗ndθ

= EΘ[Θ
⊗n]

15/17

Permutation invariance is a powerful tool

• Permutations are bijections of the form

π : {1, . . . ,n} → {1, . . . ,n} e.g. π =

(
12345
53421

)

• Action on H⊗n is

π|ψ1〉|ψ2〉|ψ3〉|ψ4〉|ψ5〉 = |ψ5〉|ψ4〉|ψ2〉|ψ3〉|ψ1〉

• Permutation invariant operators are approximated by
mixtures of i.i.d. operators [CKR09]

ρ = πρπ∗ ∀π =⇒ ρ ≤ p(n)
∫
θ⊗ndθ

= EΘ[Θ
⊗n]

15/17

Permutation invariance is a powerful tool

• Permutations are bijections of the form

π : {1, . . . ,n} → {1, . . . ,n} e.g. π =

(
12345
53421

)

• Action on H⊗n is

π|ψ1〉|ψ2〉|ψ3〉|ψ4〉|ψ5〉 = |ψ5〉|ψ4〉|ψ2〉|ψ3〉|ψ1〉

• Permutation invariant operators are approximated by
mixtures of i.i.d. operators [CKR09]

ρ = πρπ∗ ∀π =⇒ ρ ≤ p(n)
∫
θ⊗ndθ

= EΘ[Θ
⊗n]

15/17

Permutation invariance is a powerful tool

• Permutations are bijections of the form

π : {1, . . . ,n} → {1, . . . ,n} e.g. π =

(
12345
53421

)

• Action on H⊗n is

π|ψ1〉|ψ2〉|ψ3〉|ψ4〉|ψ5〉 = |ψ5〉|ψ4〉|ψ2〉|ψ3〉|ψ1〉

• Permutation invariant operators are approximated by
mixtures of i.i.d. operators [CKR09]

ρ = πρπ∗ ∀π =⇒ ρ ≤ p(n)
∫
θ⊗ndθ

= EΘ[Θ
⊗n]

15/17

Permutation invariance is a powerful tool

• Permutations are bijections of the form

π : {1, . . . ,n} → {1, . . . ,n} e.g. π =

(
12345
53421

)

• Action on H⊗n is

π|ψ1〉|ψ2〉|ψ3〉|ψ4〉|ψ5〉 = |ψ5〉|ψ4〉|ψ2〉|ψ3〉|ψ1〉

• Permutation invariant operators are approximated by
mixtures of i.i.d. operators [CKR09]

ρ = πρπ∗ ∀π =⇒ ρ ≤ p(n)
∫
θ⊗ndθ

= EΘ[Θ
⊗n]

15/17

Permutation invariance is a powerful tool

• Permutations are bijections of the form

π : {1, . . . ,n} → {1, . . . ,n} e.g. π =

(
12345
53421

)

• Action on H⊗n is

π|ψ1〉|ψ2〉|ψ3〉|ψ4〉|ψ5〉 = |ψ5〉|ψ4〉|ψ2〉|ψ3〉|ψ1〉

• Permutation invariant operators are approximated by
mixtures of i.i.d. operators [CKR09]

ρ = πρπ∗ ∀π =⇒ ρ ≤ p(n)
∫
θ⊗ndθ

= EΘ[Θ
⊗n]

15/17

Permutation invariance is a powerful tool

• Permutations are bijections of the form

π : {1, . . . ,n} → {1, . . . ,n} e.g. π =

(
12345
53421

)

• Action on H⊗n is

π|ψ1〉|ψ2〉|ψ3〉|ψ4〉|ψ5〉 = |ψ5〉|ψ4〉|ψ2〉|ψ3〉|ψ1〉

• Permutation invariant operators are approximated by
mixtures of i.i.d. operators [CKR09]

ρ = πρπ∗ ∀π =⇒ ρ ≤ p(n)
∫
θ⊗ndθ = EΘ[Θ

⊗n]

15/17

Rough sketch of the proof

• Protocol is invariant under permutation of verifier’s
registers if prover knows π.

• Randomly permute An, give π to prover.

• No loss of generality in assuming prover purifies choice of
π.

• Equivalent to attack using permutation invariant ρAnRn

• Pr[Attack | ρAnRn] ≤ Pr[Attack |
∫
θ⊗nAR dθ] ≤ negl(n)

easy

• Still need to unpermute verifier’s output

hard

16/17

Rough sketch of the proof

• Protocol is invariant under permutation of verifier’s
registers if prover knows π.

• Randomly permute An, give π to prover.

• No loss of generality in assuming prover purifies choice of
π.

• Equivalent to attack using permutation invariant ρAnRn

• Pr[Attack | ρAnRn] ≤ Pr[Attack |
∫
θ⊗nAR dθ] ≤ negl(n)

easy

• Still need to unpermute verifier’s output

hard

16/17

Rough sketch of the proof

• Protocol is invariant under permutation of verifier’s
registers if prover knows π.

• Randomly permute An, give π to prover.

• No loss of generality in assuming prover purifies choice of
π.

• Equivalent to attack using permutation invariant ρAnRn

• Pr[Attack | ρAnRn] ≤ Pr[Attack |
∫
θ⊗nAR dθ] ≤ negl(n)

easy

• Still need to unpermute verifier’s output

hard

16/17

Rough sketch of the proof

• Protocol is invariant under permutation of verifier’s
registers if prover knows π.

• Randomly permute An, give π to prover.

• No loss of generality in assuming prover purifies choice of
π.

• Equivalent to attack using permutation invariant ρAnRn

• Pr[Attack | ρAnRn] ≤ Pr[Attack |
∫
θ⊗nAR dθ] ≤ negl(n)

easy

• Still need to unpermute verifier’s output

hard

16/17

Rough sketch of the proof

• Protocol is invariant under permutation of verifier’s
registers if prover knows π.

• Randomly permute An, give π to prover.

• No loss of generality in assuming prover purifies choice of
π.

• Equivalent to attack using permutation invariant ρAnRn

• Pr[Attack | ρAnRn] ≤ Pr[Attack |
∫
θ⊗nAR dθ] ≤ negl(n)

easy

• Still need to unpermute verifier’s output

hard

16/17

Rough sketch of the proof

• Protocol is invariant under permutation of verifier’s
registers if prover knows π.

• Randomly permute An, give π to prover.

• No loss of generality in assuming prover purifies choice of
π.

• Equivalent to attack using permutation invariant ρAnRn

• Pr[Attack | ρAnRn] ≤ Pr[Attack |
∫
θ⊗nAR dθ] ≤ negl(n)

easy

• Still need to unpermute verifier’s output

hard

16/17

Rough sketch of the proof

• Protocol is invariant under permutation of verifier’s
registers if prover knows π.

• Randomly permute An, give π to prover.

• No loss of generality in assuming prover purifies choice of
π.

• Equivalent to attack using permutation invariant ρAnRn

• Pr[Attack | ρAnRn] ≤ Pr[Attack |
∫
θ⊗nAR dθ] ≤ negl(n)

easy

• Still need to unpermute verifier’s output hard

16/17

Conclusion

Conclusion and open problems

Conclusion

• Certifying mixed states is possible if you have access to
the source.

• Suitable for use in a cryptographic setting.
• Permutation invariance plays essential role in proof.

Open problems

• Certifying arbitrary reference states (vs ϕ⊗n)
• Do sampling in the more general sense of estimating the
error rate.

17/17

Conclusion and open problems

Conclusion

• Certifying mixed states is possible if you have access to
the source.

• Suitable for use in a cryptographic setting.
• Permutation invariance plays essential role in proof.

Open problems

• Certifying arbitrary reference states (vs ϕ⊗n)
• Do sampling in the more general sense of estimating the
error rate.

17/17

Conclusion and open problems

Conclusion

• Certifying mixed states is possible if you have access to
the source.

• Suitable for use in a cryptographic setting.
• Permutation invariance plays essential role in proof.

Open problems

• Certifying arbitrary reference states (vs ϕ⊗n)
• Do sampling in the more general sense of estimating the
error rate.

17/17

Conclusion and open problems

Conclusion

• Certifying mixed states is possible if you have access to
the source.

• Suitable for use in a cryptographic setting.
• Permutation invariance plays essential role in proof.

Open problems

• Certifying arbitrary reference states (vs ϕ⊗n)
• Do sampling in the more general sense of estimating the
error rate.

17/17

Conclusion and open problems

Conclusion

• Certifying mixed states is possible if you have access to
the source.

• Suitable for use in a cryptographic setting.
• Permutation invariance plays essential role in proof.

Open problems

• Certifying arbitrary reference states (vs ϕ⊗n)
• Do sampling in the more general sense of estimating the
error rate.

17/17

Conclusion and open problems

Conclusion

• Certifying mixed states is possible if you have access to
the source.

• Suitable for use in a cryptographic setting.
• Permutation invariance plays essential role in proof.

Open problems

• Certifying arbitrary reference states (vs ϕ⊗n)
• Do sampling in the more general sense of estimating the
error rate.

17/17

Thank you!
The paper: arXiv:1804.04730

17/17

	Sampling
	Proof Tools and Sketch
	Conclusion

