Sampling mixed quantum states

arXiv:1804.04730

Frédéric Dupuis CNRS, LORIA, Nancy, France

Joint work with Philippe Lamontagne, Serge Fehr and Louis Salvail

Sampling

Classical certification

|Source|

X1 X2 X3 Xy Xs Xe X7 Xg Xo Xi0 Xn1 X12 X3 Xis Xis
X6 X17 X1g X19 X20 X21 X2 X23 Xou Xa5 X26 X27 X2g X29 X30
X31 X32 X33 X34 X35 X36 X37 X38 X39 Xuo Xu1 Xaz Xu3 Xug Xus
Xuo Xu7 Xug Xug Xso Xs1 Xz Xs3 Xsy Xss Xse Xs7 Xsg Xsg Xeo

1/17

Classical certification

|Source|

X1 X3 Xs Xe X7 Xo Xio X11 Xi2 X13 Xou Xis
X6 &40 X18 X10 X0 Xo1 X2 Xa3 Xou (K25)&28) Xo7 X28 X290

(D) Xa2 X33 X34 888 X36 X37 X3s X30 Xao Xa1 Xuo Xu3 Xag Xus

Xug Xu7 Kag)Xuo K80) X51 Xs2 Xs3 Xsu Xs5 Xse K82 Xss X509 Xeo

1/17

Classical certification

|Source|

X1 X3 Xs Xe X7 Xo Xio X11 Xi2 X13 Xou Xis
X6 &40 X18 X10 X0 Xo1 X2 Xa3 Xou (K25)&28) Xo7 X28 X290

(D) Xa2 X33 X34 888 X36 X37 X3s X30 Xao Xa1 Xuo Xu3 Xag Xus

Xug Xu7 Kag)Xuo K80) X51 Xs2 Xs3 Xsu Xs5 Xse K82 Xss X509 Xeo

Suppose X; € {0,1}. Then, sampling tells us

. h
- If we only see zeros in the sample =¥ we should have at

most dn 1's in the rest
1/17

Quantum certification

|Source p|

A As As Ae A7 Ag Arg A Arp Az Ay Asgs
Are B1)) Ars Ao Azg Ax Az Az Ar, B39)B28)A27 Azs Ads

A32 Azz Az A36 Az7 A3g A3g Aug Aut Aup Auz Asy Aus

Ase Az Bug)Aso B50)Ast Asy Asz Asy, Ass Ase B5))Ass Aso Ago

- Now, each A; is a qubit
- Suppose we measure all the qubits in the sample in the
computational basis, get all zeros
- What can we say about the state?
2/17

Quantum certification

|Source pl

A A3 As Ae A7 Ag Arg A Arp A3 Avy Ags
Are B2 Ars Ao Azo Ax Ax Az Ary, B39)B28)Az7 Ass Ads

@3) A2 Asz A B39)As6 As7 Asg Azo Auo Aur Asp Auz Aus Ass

Ase Asy Bag)Aso B50)As1 Asy Ass Asy Ass Ase @5 Ass Aso Ago

- We can define a low-error subspace

x?*>:x?*kmsatmoﬁgn13}

Te := span {

- Statement:
tr [PDHTS} > 1— negl 317

Quantum sampling

|Source p|

A As As Ae A7 Ag Ag Ay Arp Az Avy Asgs
Are B30 Ars Ao Azg Ax Az Az Ar, B39)B28)Az7 Ass Axs

A32 Azz Az A36 Az7 A3g A3g Aug Aut Aup Auz Asg Aus

Aue A7 Bag)Aso B50)As1 Asy Ass Asy Ass Ase B5))Ass Aso Ao

- Bouman and Fehr showed that any classical sampling

procedure has a quantum analogue
- This works as long as we're certifying pure states
- What happens if we want to certify mixed states?
4/17

Certifying mixed states

|Source pl

A A3 As Ae A7 Ag Arg A Arp A3 Avy Ags
Are @1 Ars Aro Axo A1 Aza Az Ay B39)B26) A27 A Ao
@3) A2 Asz A B39)As6 As7 Asg Azo Auo Aur Asp Auz Aus Ass

Ase Asy Bag)Aso B50)As1 Asy Ass Asy Ass Ase @5 Ass Aso Ago

- We now want to certify that most positions are in the
mixed state ¢

- We could measure sampled positions in the diagonal
basis of ¢, see if we get the right statistics

- This fails: a pure state with the right stats would pass the

test 5/17

Certifying mixed states

- The task is impossible as it stands:

- ©®" is a mixture of pure states, each of which should fail
the test

- Classically, the task also makes no sense

- Looking at a bitstring, what probability distribution did it
come from?

- It makes sense if we can ask for purifications:

©on = |©)ar

6/17

A mixed state certification protocol

A interactive game between two players: a Prover and a Verifier

7117

A mixed state certification protocol

A interactive game between two players: a Prover and a Verifier

Verifier wants to certify that his state is close to ¢®". Prover
wants to fool the verifier into thinking he has the right state
even though it's not the case.

717

A mixed state certification protocol

A interactive game between two players: a Prover and a Verifier

Goal

Verifier wants to certify that his state is close to ¢®". Prover
wants to fool the verifier into thinking he has the right state
even though it's not the case.

Prepare |p)5s, send A" to verifier.

Choose a random sample, announce it to prover.

Send R for each position in sample.

Measure {|eX¢|ar: I — |@)¢lar} fOr each joint system AR in
sample.

V. Accept if no errors, reject otherwise.

P.
V.
P.
V.

Is +his Pf‘O+OCO[secure? What does it niean fo be secure?

717

Applications

This has some applications in cryptography:

- Coin tossing: Alice prepares n EPR pairs, Bob certifies
them, then they measure in the computational basis.

- Caveat: we still get a few errors, no way to get rid of them
= we get a source of min-entropy arbitrarily close to n

- Preparing “magic states” for multiparty computation
protocols

8/17

Defining security

How do we define security? Tempting definition:

- With high probability, the prover could produce
purifications of the remaining systems with at most en

errors
P. m
V.

v $§8383383338388

This definition doesn’t work, because of postselection attacks
9/17

Postselection attacks

Postselection attack

v $68333833838388

Postselection attacks

Postselection attack

v $68333833838388

1. Learns sample

10/17

Postselection attacks

Postselection attack

v $683383383383838 3

1. Learns sample

2. Measures qubits

10/17

Postselection attacks

Postselection attack

» gelslees 3 s o

1. Learns sample
2. Measures qubits

3. Aborts based on
result

10/17

Postselection attacks

Postselection attack

F SIsels 3 ORI s Iy oot

1. Learns sample

2. Measures qubits

3. Aborts based on
result

Selec"—ion

Post-

10/17

Postselection attacks

Postselection attack

F SIsels 3 ORI s Iy oot

1. Learns sample
2. Measures qubits
3. Aborts based on

result

Pos'{"sele

ction

Example

Prepare \i[z(|00> + [11))®n,
measure positions outside of
sample, abort if result

#10)°"7"

Resulting state always
0y

10/17

What can the

/17

What can the

The prover can

prepare the honest state, up to a few errors,
prepare a mixture/superposition of such states,
purify this mixture, and

post—select on a measurement outcome.

1n/17

What can the

The prover can

prepare the , up to a few errors,
prepare a mixture/superposition of such states,
purify this mixture, and

post—select on a measurement outcome.

1n/17

What can the

The prover can

prepare the honest state, up to a
prepare a mixture/superposition of such states,
purify this mixture, and

post—select on a measurement outcome.

[0)®" = o)) 0} o) 0} o) o)) [0}) |0} [0 o) 0} o)

e) = o)\ 01 [} D) P&\ [0) S [0) @))&\ @)) 7= [0} [0)

1n/17

What can the

The prover can

prepare the honest state, up to a few errors,
prepare a of such states,
purify this mixture, and

post-select on a measurement outcome.

[0)®" = o)) 0} o) 0} o) o)) [0}) |0} [0 o) 0} o)

[te) =)\D [©)))@ [©) S l0) @))@ @) |0} = |0})

= Z Pelthe)e|

1n/17

What can the

The prover can

prepare the honest state, up to a few errors,
prepare a mixture/superposition of such states,
this mixture, and

post—select on a measurement outcome.

[Ye) =)\D [0} @))@ 19) S|}))@ @)} = |0})

PAnRn = Z PelweX el

|\U>A”R” = Ze m|we>AﬂRﬂ ®

1n/17

What can the

The prover can

prepare the honest state, up to a few errors,
prepare a mixture/superposition of such states,
purify this mixture, and

on a measurement outcome.

PAnRn = Z Pe|tbe)Vel

|W>ANRNE = Ze \/FTe|1/fe>Aan ® |Te>E

(W) pngog = Lan ® |W) pngog

1n/17

What can the

The prover can

prepare the honest state, up to a few errors,
prepare a mixture/superposition of such states,
purify this mixture, and

post-select on a measurement outcome.
PAnRn = Z Pe|te)tel
&

|W>AﬂRnE — Ze \/[Te|¢e>Aan X |Te>E

(W) pngog = Tan @ Meog|W) pogng

1n/17

Defining success

Definition (Soundness)

For any strategy for the prover, the output state pan of the

verifier is sit. RHS is "rougl approximation’ o LS
pan < Pn - a0

where p, is polynomial in n, 140 is part of an ideal state
W’>A“R"E aﬂd tr(O’) S ﬂegl(n).

12/17

Defining success

Definition (Soundness)
For any strategy for the prover, the output state pan of the
verifier is sit. RHS is "rougl approximation’ o LS

pan < Pp - Yan + 0

where p, is polynomial in n, 140 is part of an ideal state
‘1/}>AanE aﬂd tr(O') S ﬂegl(n).

Application
For any “bad event”,

Pr[bad event | pan] < pn Pr[bad event | ¥an] + negl(n)
Secure application if Pr[bad event | ¢an] is negligible.

12/17

Our sampling protocol:

P. Prepare |p)5x, send A™ to verifier.
V. Choose a random sample, announce it to prover.
P. Send R for each position in sample.

V. Measure {|oXplar, I — [@)X@lar} fOr each joint system AR in
sample.

V. Accept if no errors, reject otherwise.

Theorem (Main)
This protocol is sound.

13/17

Proof Tools and Sketch

Permutations and sampling are closely related

14/17

Permutations and sampling are closely related

Choosing a random subset of size k of a population

0,1,2,3,4,5,6,7,8,9,10,11,12,13, 14, 15,16, 17, 18,19, 20, 21, 22

14/17

Permutations and sampling are closely related

Choosing a random subset of size k of a population
0,1,2,3,4,5,6,7,8,9,10,11,12,13, 14,15, 16, 17,18, 19, 20, 21, 22

is the same as randomly permuting the population and picking
the first k elements

1,22,20,0,11,12,14,8,9,3,18,15,6,2,17,5,19, 10, 13, 4,21, 16,7

14/17

Permutations and sampling are closely related

Choosing a random subset of size k of a population
0,1,2,3,4,5,6,7,8,9,10,11,12,13, 14,15, 16, 17,18, 19, 20, 21, 22

is the same as randomly permuting the population and picking
the first k elements

1,22,20,0,11,12,14,8,9,3,18,15,6,2,17,5,19, 10, 13, 4,21, 16,7

Samplir\é is "invariant unc‘er‘ Per‘mu+a+ion".

14/17

Permutation invariance is a powerful tool

- Permutations are bijections of the form

w {00} {1,...,n} e.g.ﬁ<12345>

15/17

Permutation invariance is a powerful tool

- Permutations are bijections of the form

w {00} {1,...,n} e.g.ﬁ<12345>

- Action on H®" is

|1 [Y2)|3) [ha) [ths) = |9s)[bu) [h2) |4h3) [hn)

15/17

Permutation invariance is a powerful tool

- Permutations are bijections of the form

234
w {00} {1,...,n} e.g.ﬁ<135>

- Action on H®" is

|1 [Y2)|3) [ha) [ths) = |9s)[bu) [h2) |4h3) [hn)

- Permutation invariant operators are approximated by
mixtures of i.i.d. operators [CKR0O9]

p=mprn* VYm = p< p(ﬂ)/0®”d9

15/17

Permutation invariance is a powerful tool

- Permutations are bijections of the form

1234
w {00} {1,...,n} e.g_ﬁ< 35)

- Action on H®" is

|1 [Y2)|3) [ha) [ths) = |9s)[bu) [h2) |4h3) [hn)

- Permutation invariant operators are approximated by
mixtures of i.i.d. operators [CKR0O9]

p=mprT Vn = p< p(ﬂ)/9®nd9

15/17

Permutation invariance is a powerful tool

- Permutations are bijections of the form

w {00} {1,...,n} e.g.ﬁ<m45>

- Action on H®" is

|1 [Y2)|3) [ha) [ths) = |9s)[bu) [h2) |4h3) [hn)

- Permutation invariant operators are approximated by
mixtures of i.i.d. operators [CKR0O9]

p=mprn* VYr = p<p(ﬂ)/0®”d9

15/17

Permutation invariance is a powerful tool

- Permutations are bijections of the form

234
w {00} {1,...,n} e.g.ﬁ<135>

- Action on H®" is

|1 [Y2)|3) [ha) [ths) = |9s)[bu) [h2) |4h3) [hn)

- Permutation invariant operators are approximated by
mixtures of i.i.d. operators [CKR0O9]

p=mprn* VYm = p< p(ﬂ)/0®”d(/

15/17

Permutation invariance is a powerful tool

- Permutations are bijections of the form

234
w {00} {1,...,n} e.g.ﬁ<135>

- Action on H®" is

|1 [Y2)|3) [ha) [ths) = |9s)[bu) [h2) |4h3) [hn)

- Permutation invariant operators are approximated by
mixtures of i.i.d. operators [CKR0O9]

p=mpr* Vr = pgp(n)/() "de

15/17

Permutation invariance is a powerful tool

- Permutations are bijections of the form

234
w {00} {1,...,n} e.g.ﬁ<135>

- Action on H®" is

|1 [Y2)|3) [ha) [ths) = |9s)[bu) [h2) |4h3) [hn)

- Permutation invariant operators are approximated by
mixtures of i.i.d. operators [CKR0O9]

p=mpr* VYm = p< p(ﬂ)/0®”d9 = Eg[0%"]

15/17

Rough sketch of the proof

- Protocol is invariant under permutation of verifier's
registers if prover knows .

- Randomly permute A", give 7 to prover.

- No loss of generality in assuming prover purifies choice of

.
- Equivalent to attack using permutation invariant pangn

- Pr[Attack | pangn] < Pr[Attack | [65 d6] < negl(n)

- Still need to unpermute verifier's output

16/17

Rough sketch of the proof

- Protocol is invariant under permutation of verifier's
registers if prover knows .

- Randomly permute A", give « to prover.

- No loss of generality in assuming prover purifies choice of

.
- Equivalent to attack using permutation invariant pangn

- Pr[Attack | pangn] < Pr[Attack | [65 d6] < negl(n)

- Still need to unpermute verifier's output

16/17

Rough sketch of the proof

- Protocol is invariant under permutation of verifier's
registers if prover knows .

- Randomly permute A", give 7 to prover.

- No loss of generality in assuming prover purifies choice of

- Equivalent to attack using permutation invariant pangn

- Pr[Attack | pangn] < Pr[Attack | [65 d6] < negl(n)

- Still need to unpermute verifier's output

16/17

Rough sketch of the proof

- Protocol is invariant under permutation of verifier's
registers if prover knows .

- Randomly permute A", give 7 to prover.

- No loss of generality in assuming prover purifies choice of

.
- Equivalent to attack using permutation invariant pangn

- Pr[Attack | pangn] < Pr[Attack | [65 d6] < negl(n)

- Still need to unpermute verifier's output

16/17

Rough sketch of the proof

- Protocol is invariant under permutation of verifier's
registers if prover knows .

- Randomly permute A", give 7 to prover.

- No loss of generality in assuming prover purifies choice of

.
- Equivalent to attack using permutation invariant pangn

- Pr[Attack | pangn] < Prl[Attack | [6% d6] < negl(n)

- Still need to unpermute verifier's output

16/17

Rough sketch of the proof

- Protocol is invariant under permutation of verifier's
registers if prover knows .

- Randomly permute A", give 7 to prover.

- No loss of generality in assuming prover purifies choice of

.
- Equivalent to attack using permutation invariant pangn

- Pr[Attack | pangn] < Pr[Attack | [65 d6] < negl(n)

- Still need to unpermute verifier's output

16/17

Rough sketch of the proof

- Protocol is invariant under permutation of verifier's
registers if prover knows .

- Randomly permute A", give 7 to prover.

- No loss of generality in assuming prover purifies choice of

.
- Equivalent to attack using permutation invariant pangn

- Pr[Attack | pangn] < Pr[Attack | [65 d6] < negl(n)

ec\SV
- Still need to unpermute verifier's output Lerd

16/17

Conclusion

Conclusion and open problems

Suitable for use in a cryptographic setting.
Permutation invariance plays essential role in proof.

17/17

Conclusion and open problems

Certifying mixed states is possible if you have access to
the source.

Permutation invariance plays essential role in proof.

17/17

Conclusion and open problems

Certifying mixed states is possible if you have access to
the source.

Suitable for use in a cryptographic setting.

17/17

Conclusion and open problems

Certifying mixed states is possible if you have access to
the source.

Suitable for use in a cryptographic setting.
Permutation invariance plays essential role in proof.

Certifying arbitrary reference states (vs ©p®")

Do sampling in the more general sense of estimating the
error rate.

17/17

Conclusion and open problems

Certifying mixed states is possible if you have access to
the source.

Suitable for use in a cryptographic setting.
Permutation invariance plays essential role in proof.

Do sampling in the more general sense of estimating the
error rate.

17/17

Conclusion and open problems

Certifying mixed states is possible if you have access to
the source.

Suitable for use in a cryptographic setting.

Permutation invariance plays essential role in proof.

Certifying arbitrary reference states (vs ©p®")

17/17

Thank you!
The paper: arXiv:1804.04730

oria CF,]I'S W

	Sampling
	Proof Tools and Sketch
	Conclusion

