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Bell nonlocality

Bell scenario
j

a

k

b

P (a, b|j, k)

Assume that P ∈ Q is quantum

P (a, b|j, k) = tr
[
(F ja ⊗Gkb )ρAB

]
.

Def.: P ∈ L is local if

P (a, b|j, k) =
∑
λ

p(λ) pA(a|j, λ) pB(b|k, λ).

Bell: L ( Q ⇐⇒ “ quantum mechanics is (Bell) nonlocal ”
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Bell nonlocality

Given some P ∈ Q, how to show that P 6∈ L?

Real vector C = (cabjk) define

〈C,P 〉 :=
∑
abjk

cabjkP (a, b|j, k)

and
βL := max

P∈L
〈C,P 〉 (local value)

βQ := max
P∈Q
〈C,P 〉 (quantum value)

(suppose βL < βQ)

Bell violation: 〈C,P 〉 > βL =⇒ P 6∈ L
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Bell nonlocality

Obs.: Separable states give local statistics (for all measurements)

ρAB =
∑
λ

pλσλ ⊗ τλ,

P (a, b|j, k) = tr
[
(F ja ⊗Gkb )ρAB

]
=
∑
λ

pλ · tr
(
F jaσλ

)︸ ︷︷ ︸
pA(a|j,λ)

· tr
(
Gkb τλ

)︸ ︷︷ ︸
pB(b|k,λ)

.

Nonlocality =⇒ entanglement
can we make this connection more explicit/rigorous?
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Self-testing

Given P (a, b|j, k) = tr
[
(F ja ⊗Gkb )ρAB

]
deduce properties of ρAB, {F ja}, {Gkb}

(i) we do not assume that ρAB is pure or that
the measurements are projective
(we want to rigorously deduce it!)

(ii) often only promised some Bell violation

〈C,P 〉 = β

might seem like a hopeless task...

...but often can deduce essentially everything!
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Sum-of-squares decomposition

Given a Bell functional C, how to compute βQ = maxP∈Q 〈C,P 〉?
Easy to provide lower bounds, what about upper bounds?

1 Construct Bell operator

W :=
∑
abjk

cabjkF
j
a ⊗Gkb

2 Prove that for all measurements

W ≤ c1

for c ∈ R
3 Then βQ ≤ c because for all quantum realisations

〈C,P 〉 = tr(WρAB) ≤ c tr(ρAB) = c
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Sum-of-squares decomposition

Q: How to show that W ≤ c1 for all measurements?

A: Write difference as sum of squares

c1−W ≥
∑
j

L†jLj .

(operators Lj depend on measurement operators)
if βQ = c =⇒ sum-of-squares (SOS) decomposition is tight
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Example: the CHSH inequality

the CHSH operator

W := A0 ⊗ (B0 +B1) +A1 ⊗ (B0 −B1)

where −1 ≤ Aj ≤ 1 and −1 ≤ Bk ≤ 1

define

L0 = A0 ⊗ 1− 1⊗ B0 +B1√
2

L1 = A1 ⊗ 1− 1⊗ B0 −B1√
2

check

W =
1√
2

[
(A2

0 +A2
1)⊗ 1 + 1⊗ (B2

0 +B2
1)− (L†0L0 + L†1L1)

]
W ≤ 2

√
2 1 and βQ = 2

√
2, so the SOS decomposition is tight
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Example: the CHSH inequality

W =
1√
2

[
(A2

0 +A2
1)⊗ 1 + 1⊗ (B2

0 +B2
1)− (L†0L0 + L†1L1)

]
observing tr(WρAB) = 2

√
2 implies:

1 all measurements are projective on the local supports:
tr(A2

jρA) = tr(B2
kρB) = 1

2 observables of Alice and Bob satisfy LjρAB = 0

(A0 ⊗ 1)ρAB =

(
1⊗ B0 +B1√

2

)
ρAB

if ρA and ρB are full-rank, then

A2
0 = 1 =⇒

(
B0 +B1√

2

)2

= 1 =⇒ {B0, B1} = 0
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Example: the CHSH inequality

the relation determines form of observables

B2
0 = B2

1 = 1 and {B0, B1} = 0 =⇒
B0 = UB(σx ⊗ 1)U †B

B1 = UB(σz ⊗ 1)U †B

the inequality is symmetric, so A0 and A1 have the same form
construct W and determine the eigenspace corresponding to 2

√
2

Self-testing (rigidity) statement for CHSH: if β = 2
√

2 then

A0 = UA(σx ⊗ 1)U †A B0 = UB(σx ⊗ 1)U †B

A1 = UA(σz ⊗ 1)U †A B1 = UB(σz ⊗ 1)U †B

and

ρAB = U(ΦA′B′ ⊗ τA′′B′′)U † for U := UA ⊗ UB
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Example: the CHSH inequality

Strategy:
1 Find tight SOS decomposition
2 Deduce algebraic relations between local observables
3 Deduce their exact form (up to unitaries and extra degrees of

freedom)
4 Construct Bell operator and find eigenspace corresponding to βQ
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Result 1: SATWAP inequality

maximally violated by maximally entangled state and
CGLMP measurements (Remik’s talk)
CGLMP measurement in dimension d for φ ∈ [0, 2π]

|eφj 〉 :=
1√
d

d−1∑
k=0

ω(j−φ)k|k〉 for ω := exp(2πi/d)

we look at 2 inputs and 3 outputs, optimal angles φ0 = 0,
φ1 = 1/2; computing |〈e1/2j′ |e

0
j 〉| gives

j\j′ 0 1 2

0 2/3 2/3 1/3
1 1/3 2/3 2/3
2 2/3 1/3 2/3

not mutually unbiased
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Result 1: SATWAP inequality

SOS written in terms of observables (unitary for projective
measurements)

Aj =
∑
a

ωaF ja

Bk =
∑
b

ωbGkb

SOS decomposition and some algebra =⇒ projectivity and

ω2B†0 + ωB†1 = −{B0, B1}

more algebra... =⇒ B0, B1 are the CGLMP measurements
acting on a qutrit (up to usual equivalences)
construct Bell operator =⇒ . . .
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Result 1: SATWAP inequality

Result: Self-testing statement for SATWAP for d = 3

Cor. 1: SATWAP functional has a unique maximiser

qu
an
tu
m

se
t

lo
ca
l s
et

βL

βQ P ∗

Cor. 2: The maximal violation certifies log 3 bits of local randomness
=⇒ could use for cryptography
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Result 2: generalised CHSH inequality

j

a

k

b

P (a, b|j, k)

CHSH: a, b, j, k ∈ {0, 1}
win ⇐⇒ a⊕ b⊕ jk = 0

CHSHd: a, b, j, k ∈ {0, 1, . . . , d− 1}
win ⇐⇒ a+ b+ jk ≡ 0 mod d
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Result 2: generalised CHSH inequality

Buhrman and Massar (’05) proposed and studied d = 3

Ji et al. (’08) and Liang et al. (’09) studied higher d (mainly
prime)

inconclusive! classical value, quantum value, optimal
realisation: not understood
conclusion: this Bell functional seems natural, but turns out to
be ill-behaved
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Result 2: generalised CHSH inequality

Bell operator reads

Wd :=
1

d3

d−1∑
n=0

d−1∑
j,k=0

ωnjkAnj ⊗Bn
k

we consider prime d and

W ′d :=
1

d3

d−1∑
n=0

λn,d

d−1∑
j,k=0

ωnjkAnj ⊗Bn
k

for λn,d ∈ C, |λn,d| = 1

for the right choice of λn,d the quantum value can be computed
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Result 2: generalised CHSH inequality

quantum realisation achieving the quantum value

|Φ〉 =
1√
d

d−1∑
j=0

|j〉|j〉

Bk = ωk(k+1)XZk

Aj = . . .

the observables correspond to d distinct bases which are pairwise
mutually unbiased
for d = 3 SOS relations allow us to prove self-testing!



Result 2: generalised CHSH inequality

For d = 3 the phases are:

λ0,d = 1, λ1,d = e−iπ/18, λ2,d = e+iπ/18

(e−iπ/18 ≈ 0.9849− 0.1737i ≈ 1)

SOS + algebra =⇒ projectivity and

B†0 = −ω{B1, B2} (and perm.)

this is sufficient to deduce the form of observables. . .

. . . except that now there are two inequivalent solutions

(B0, B1, B2) 6≡ (BT
0 , B

T
1 , B

T
2 ) not unitarily equivalent

(σx, σy, σz) 6≡ (σx,−σy, σz)

local Hilbert spaces decompose into the “right-” and “left-handed”
subspace and maximal violation possible only if Alice and Bob
use opposite types!
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Result 2: generalised CHSH inequality

Maximal violation certifies:
|Φ〉 = 1√

3

∑2
j=0 |j〉|j〉

specific MUB measurements for each party
the two measurements must be of the opposite type

Corollaries:
has unique maximiser in Q
certifies log 3 bits of local randomness
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self-testing results not relying on self-testing of qubit subspaces

Open questions:
extend SATWAP self-testing to arbitrary d
extend generalised CHSH self-testing to arbitrary prime d
robustness!
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So you can really certify
quantum systems without
trusting the devices at all? Yes, Pooh, quantum

mechanics is very strange and
nobody really understands it, but
let’s talk about it another day. . .


