Methods for the verification of bound entanglement

Matthias Kleinmann, Universität Siegen
joint work with G. Sentís, J.N. Greiner, J. Shang, and J. Siewert

arXiv:1804.07562
What is bound entanglement?

Distillable entanglement

A state ρ_{AB} is distillable, if

- having some finite number of copies it is possible to create
- by means of LOCC (local operations and classical communication)

at least one maximally entangled state $|\phi\rangle_{AB} = \frac{1}{\sqrt{d}} \sum_i |ii\rangle$.

Bound entanglement

An entangled state which is not distillable is bound entangled.
Distillable entanglement

A state ρ_{AB} is **distillable**, if

A state ρ_{AB} is **distillable**, if having some finite number of copies it is possible to create by means of LOCC (local operations and classical communication) at least one maximally entangled state $|\phi\rangle_{AB} = \frac{1}{\sqrt{d}} \sum_i |ii\rangle$.

Bound entanglement

An entangled state which is not distillable is **bound entangled**.

Methods for the verification of bound entanglement, p. 2
What is bound entanglement?

Distillable entanglement

A state ρ_{AB} is **distillable**, if

- having some finite number of copies it is possible to create

Bound entanglement

An entangled state which is not distillable is **bound entangled**.
Distillable entanglement

A state ρ_{AB} is distillable, if

- having some finite number of copies
- it is possible to create

by means of LOCC (local operations and classical communication)

Bound entanglement

An entangled state which is not distillable is bound entangled.
What is bound entanglement?

Distillable entanglement

A state ρ_{AB} is **distillable**, if

- having some finite number of copies
it is possible to create
- by means of LOCC (local operations and classical communication)
at least one maximally entangled state

$$|\phi\rangle_{AB} = \frac{1}{\sqrt{d}} \sum_i |ii\rangle.$$
What is bound entanglement?

Distillable entanglement

A state ρ_{AB} is **distillable**, if

- having some finite number of copies it is possible to create
- by means of LOCC (local operations and classical communication) at least one maximally entangled state

$$|\phi\rangle_{AB} = \frac{1}{\sqrt{d}} \sum_i |ii\rangle.$$

Bound entanglement

An entangled state which is not distillable is **bound entangled**.
The PPT criterion

Characterizing bound entangled states seems intractable.
Characterizing bound entangled states seems intractable.

Theorem (Horodecki³)

Any state with positive partial transpose (PPT) is undistillable.
Characterizing bound entangled states seems intractable.

Theorem (Horodecki³)

Any state with positive partial transpose (PPT) is undistillable.

→ Two qutrits are the smallest system with bound entanglement.
Characterizing bound entangled states seems intractable.

Theorem (Horodecki³)

Any state with positive partial transpose (PPT) is undistillable.

→ **Two qutrits are the smallest system with bound entanglement.**

Do all bound entangled states have a PPT?
The PPT criterion

Characterizing bound entangled states seems intractable.

Theorem (Horodecki3)

Any state with positive partial transpose (PPT) is undistillable.

Two qutrits are the smallest system with bound entanglement.

Do all bound entangled states have a PPT?

Often implied: PPT entangled \iff bound entangled.
A multipartite state is bound entangled if
• it is entangled,
• but undistillable for all bipartitions.

Example: Smolin state
\[\rho_{ABCD} = \frac{1}{4} (\Phi^+ + \Phi^- + \Psi^+ + \Psi^-) \]

Properties:
• globally entangled
• separable with respect to all bipartitions

Feels like cheating.

Methods for the verification of bound entanglement, p. 4
A multipartite state is bound entangled, if

- it is entangled,
- but undistillable for all bipartitions.

Example: Smolin state

$$\rho_{ABCD} = \frac{1}{4}(\Phi^+ + \Phi^- + \Psi^+ + \Psi^-)$$

with

$$\Psi^- = |\psi^-\rangle\langle\psi^-|,$$

etc.
A multipartite state is bound entangled, if

- it is entangled,
- but undistillable for all bipartitions.

Example: Smolin state

\[\rho_{ABCD} = \frac{1}{4}(\Phi^+ + \Phi^- + \Psi^+ + \Psi^-) \]

with \(\Psi^- = |\psi^-\psi^-\rangle\langle\psi^-\psi^-| \), etc.
A multipartite state is bound entangled, if

- it is entangled,
- but undistillable for all bipartitions.

Example: Smolin state

\[\rho_{ABCD} = \frac{1}{4} (\Phi^+ + \Phi^- + \Psi^+ + \Psi^-) \]

with \(\Psi^- = |\psi^-\psi^-\rangle\langle\psi^-\psi^-| \), etc.

Properties:

- globally entangled
- \textbf{separable} with respect to all bipartitions
A multipartite state is bound entangled, if
- it is entangled,
- but undistillable for all bipartitions.

Example: Smolin state

\[\rho_{ABCD} = \frac{1}{4}(\Phi^+ + \Phi^- + \Psi^+ + \Psi^-) \]

with \(\Psi^- = |\psi^-\psi^-\rangle\langle\psi^-\psi^-| \), etc.

Properties:
- globally entangled
- separable with respect to all bipartitions

Feels like cheating...
Experiments

Multipartite:
- Amselem & Bourennane, Nature Phys. (two.osf/zero.osf/zero.osf/nine.osf)
- Barreiro et al., Nature Phys. (two.osf/zero.osf/one.osf/zero.osf)
- Kampermann et al., PRA (two.osf/zero.osf/one.osf/zero.osf)

Bipartite:
- DiGuglielmo et al., PRL (two.osf/zero.osf/one.osf/one.osf)
- Steinhoff et al., PRA (two.osf/zero.osf/one.osf/four.osf)
- Hiesmayr & Löffler, NJP (two.osf/zero.osf/one.osf/three.osf)

Question. What was the statistical significance in those experiments?
Nowhere specified.

Methods for the verification of bound entanglement, p. 5
Experiments

Multipartite:

- Kampermann *et al.*, PRA (2010)
- ...

Bipartite:

- DiGuglielmo *et al.*, PRL (2010)
- Steinhoff *et al.*, PRA (2010)
- Hiesmayr & Löffler, NJP (2010)

Question.

What was the statistical significance in those experiments?

Nowhere specified.
Experiments

Multipartite:

• Kampermann et al., PRA (2010)
• ...

Bipartite:

• DiGuglielmo et al., PRL (2011)
• Steinhoff et al., PRA (2014)
• Hiesmayr & Löffler, NJP (2013)

Question. What was the statistical significance in those experiments? Nowhere specified.
Experiments

Multipartite:

- Kampermann et al., PRA (2010)
- ...

Bipartite:

- DiGuglielmo et al., PRL (2011)
- Steinhoff et al., PRA (2014)
- Hiesmayr & Löffler, NJP (2013)

Question.

What was the statistical significance in those experiments?
Experiments

Multipartite:

- Kampermann *et al.*, *PRA* (2010)
- ...

Bipartite:

- DiGuglielmo *et al.*, *PRL* (2011)
- Steinhoff *et al.*, *PRA* (2014)

Question.

What was the statistical significance in those experiments? **Nowhere specified.**
Certification of bound entanglement

Protocol in use.

1. Perform state tomography,
2. reconstruct state,
3. bootstrap, determine whether bound entangled,
4. report fraction of bootstrapped states with bound entanglement.

Sounds decent, yields utterly unreliable results.

• Theorem: There can be no reliable state reconstruction. [Schwemmer et al., PRL (zero.osf/one.osf/five.osf)]
• Bound entangled states are high-dimensional & nonconvex set.
Certification of bound entanglement

Protocol in use.

1. Perform state tomography,
2. reconstruct state,
3. bootstrap, determine whether bound entangled,
4. report fraction of bootstrapped states with bound entanglement.

Sounds decent
Protocol in use.

1. Perform state tomography,
2. reconstruct state,
3. bootstrap, determine whether bound entangled,
4. report fraction of bootstrapped states with bound entanglement.

Sounds decent, yields utterly unreliable results.

Theorem: There can be no reliable state reconstruction. [Schwemmer et al., PRL]
Certification of bound entanglement

Protocol in use.

1. Perform state tomography,
2. reconstruct state,
3. bootstrap, determine whether bound entangled,
4. report fraction of bootstrapped states with bound entanglement.

Sounds decent, yields utterly unreliable results.

Problems

• **Theorem:** There can be no reliable state reconstruction.
 [Schwemmer et al., PRL (2015)]

• Bound entangled states are high-dimensional & nonconvex set.
Proper statistical analysis

If ρ_0 admits a bound entangled ball with radius r_0, then we can compute an upper bound for $P[\text{data looks good} | \|\rho_0 - \rho_{\text{exp}}\|_2 \geq r_0]$

Advantages:
- easy to understand
- correct
- computationally trivial

Disadvantages:
- slightly conservative
- requires to work in Gaussian regime

Methods for the verification of bound entanglement, p. 7
Proper statistical analysis

Noncentral χ^2-test

If ρ_0 admits a bound entangled ball with radius r_0, then we can compute an upper bound for $P[\text{data looks good} | \|\rho_0 - \rho_{\text{exp}}\|^2 \geq r_0]$.

Advantages:
• easy to understand
• correct
• computationally trivial

Disadvantages:
• slightly conservative
• requires to work in Gaussian regime
Noncentral χ^2-test

If ρ_0 admits a bound entangled ball with radius r_0, then we can compute an upper bound for

$$P[\text{data looks good} \mid \|\rho_0 - \rho_{\text{exp}}\|_2 \geq r_0]$$
Proper statistical analysis

Noncentral χ^2-test

If ρ_0 admits an bound entangled ball with radius r_0, then we can compute an upper bound for

$$P[\text{data looks good} \mid \|\rho_0 - \rho_{\text{exp}}\|_2 \geq r_0]$$

Advantages:

- easy to understand
Proper statistical analysis

Noncentral χ^2-test

If ρ_0 admits a bound entangled ball with radius r_0, then we can compute an upper bound for

$$P[\text{data looks good} \mid \|\rho_0 - \rho_{\exp}\|_2 \geq r_0]$$

Advantages:

• easy to understand
• correct
Proper statistical analysis

Noncentral χ^2-test

If ρ_0 admits an bound entangled ball with radius r_0, then we can compute an upper bound for

$$P[\text{data looks good} \mid \|\rho_0 - \rho_{\text{exp}}\|_2 \geq r_0]$$

Advantages:

- easy to understand
- correct
- computationally trivial
Proper statistical analysis

Noncentral χ^2-test

If ρ_0 admits a bound entangled ball with radius r_0, then we can compute an upper bound for

$$\mathbb{P}[\text{data looks good} \mid \|\rho_0 - \rho_{\exp}\|_2 \geq r_0]$$

Advantages:

- easy to understand
- correct
- computationally trivial

Disadvantages:

- slightly conservative
- requires to work in Gaussian regime
For a bound entangled state ρ_0, find r_0 such that all states τ with $\|\rho_0 - \tau\|_2 \leq r_0$ are bound entangled.
For a bound entangled state ρ_0, find r_0 such that all states τ with $\|\rho_0 - \tau\|_2 \leq r_0$ are bound entangled.

Infeasible problem?
Task.

For a bound entangled state ρ_0, find r_0 such that all states τ with $\|\rho_0 - \tau\|_2 \leq r_0$ are bound entangled.

.ImageIcon

Infeasible problem?

(We only consider the bipartite case.)
Theorem (Horodecki)

\[\rho \text{ is undistillable if } \Gamma(\rho) \geq 0. \]
Theorem (Horodecki3)

ρ is undistillable if $\Gamma(\rho) \geq 0$.

Lemma. If $\|\rho_0 - \tau\|_2 \leq r_0$ then,

$$\lambda_{\min}[\Gamma(\tau)] \geq \lambda_{\min}[\Gamma(\rho_0)] - r_0 \sqrt{\frac{d-1}{d}}.$$
Theorem (Horodecki3)

\(\rho \) is undistillable if \(\Gamma(\rho) \geq 0 \).

Lemma. If \(\|\rho_0 - \tau\|_2 \leq r_0 \) then, \hspace{1cm} (\(d \): dimension of joint system)

\[
\lambda_{\min}[\Gamma(\tau)] \geq \lambda_{\min}[\Gamma(\rho_0)] - r_0 \sqrt{\frac{d-1}{d}}.
\]

Corollary.

All states around \(\rho_0 \) are undistillable, if

\[
\lambda_{\min}[\Gamma(\rho_0)] \geq r_0 \sqrt{\frac{d-1}{d}}.
\]
Computable cross-norm or realignment (CCNR) criterion:

Let $\left(g_k \right)_k$ be an orthonormal basis of the Hermitian operators and define $R(\rho)_{k,\ell} = \text{tr}(\rho g_k \otimes g_\ell)$.

Then, a state ρ is entangled if $\|R(\rho)\|_1 > 1$.

Lemma:

If $\|\rho_0 - \tau\|_2 \leq r_0$, then $\|R(\tau)\|_1 \geq \|R(\rho_0)\|_1 - r_0 \sqrt{d}$.

Corollary.

All states around ρ_0 are entangled, if $\|R(\rho_0)\|_1 > 1 + r_0 \sqrt{d}$.
Computable cross-norm or realignment (CCNR) criterion:

Theorem (Rudolph; Chen&Wu)

Let \((g_k)_k\) be an orthonormal basis of the Hermitian operators and define \(R(\rho)_{k,\ell} = \text{tr}(\rho g_k \otimes g_\ell)\).

Lemma: If \(\|\rho_0 - \tau\|_2 \leq r_0\), then \(\|R(\tau)\|_1 \geq \|R(\rho_0)\|_1 - r_0 \sqrt{d}\).

Corollary. All states around \(\rho_0\) are entangled, if \(\|R(\rho_0)\|_1 > 1 + r_0 \sqrt{d}\).
Computable cross-norm or realignment (CCNR) criterion:

Theorem (Rudolph; Chen&Wu)

Let \((g_k)_k\) be an orthonormal basis of the Hermitian operators and define
\[R(\rho)_{k,\ell} = \text{tr}(\rho g_k \otimes g_\ell). \]
Then, a state \(\rho\) is entangled if
\[\|R(\rho)\|_1 > 1. \]
Computable cross-norm or realignment (CCNR) criterion:

Theorem (Rudolph; Chen&Wu)

Let \((g_k)_k\) be an orthonormal basis of the Hermitian operators and define \(R(\rho)_{k,\ell} = \text{tr}(\rho g_k \otimes g_\ell)\). Then, a state \(\rho\) is entangled if
\[
\| R(\rho) \|_1 > 1.
\]

Lemma: If \(\| \rho_0 - \tau \|_2 \leq r_0\), then
\[
\| R(\tau) \|_1 \geq \| R(\rho_0) \|_1 - r_0 \sqrt{d}.
\]
Computable cross-norm or realignment (CCNR) criterion:

Theorem (Rudolph; Chen&Wu)

Let \((g_k)_k\) be an orthonormal basis of the Hermitian operators and define \(R(\rho)_{k,\ell} = \text{tr}(\rho g_k \otimes g_\ell)\). Then, a state \(\rho\) is entangled if \(\|R(\rho)\|_1 > 1\).

Lemma: If \(\|\rho_0 - \tau\|_2 \leq r_0\), then

\[
\|R(\tau)\|_1 \geq \|R(\rho_0)\|_1 - r_0 \sqrt{d}.
\]

Corollary.

All states around \(\rho_0\) are entangled, if

\[
\|R(\rho_0)\|_1 > 1 + r_0 \sqrt{d}.
\]
Conditions

\begin{align*}
\text{C1: } & \lambda_{\min}[\Gamma(\tau)] \geq \lambda_{\min}[\Gamma(\rho_0)] - r_0 \sqrt{\frac{d-1}{d}}. \\
\text{C2: } & \|R(\tau)\|_1 \geq \|R(\rho_0)\|_1 - r_0 \sqrt{d}.
\end{align*}
Optimal states

Clearly, we can find the best r_0.

Why not search a state ρ_0 with overall maximal r_0?

Optimization problem. Find ρ and r subject to

$$\text{maximize: } r$$
$$\text{such that: } \lambda_{\text{min}}[\Gamma(\rho)] \geq r \sqrt{d - 1}/d,$$
and
$$\|R(\rho)\|_1 > 1 + r \sqrt{d}.$$
Optimal states

- Clearly, we can find the best r_0.

Optimization problem.

Find ρ and r subject to

$$\begin{align*}
\maximize & \quad r \\
\text{subject to} & \quad \lambda_{\text{min}}[\Gamma(\rho)] \geq r \sqrt{d - 1} \\
& \quad \|R(\rho)\|_1 > 1 + r \sqrt{d}.
\end{align*}$$

- In principle, can be applied to given dimension.
- Practically, need to choose family of states with few parameters.
Optimal states

- Clearly, we can find the best r_0.
- Why not search a state ρ_0 with overall maximal r_0?
• Clearly, we can find the best r_0.
• Why not search a state ρ_0 with overall maximal r_0?

Optimization problem.

Find ρ and r subject to

maximize: r

such that: $\lambda_{\min}[\Gamma(\rho)] \geq r \sqrt{\frac{d-1}{d}}$, and

$\|R(\rho)\|_1 > 1 + r \sqrt{d}$.

In principle, can be applied to given dimension.

Practically, need to choose family of states with few parameters.
Optimal states

• Clearly, we can find the best r_0.
• Why not search a state ρ_0 with overall maximal r_0?

Optimization problem.

Find ρ and r subject to

maximize: r

such that: $\lambda_{\min}[\Gamma(\rho)] \geq r \sqrt{\frac{d-1}{d}}$, and

$\|R(\rho)\|_1 > 1 + r\sqrt{d}$.

• In principle, can be applied to given dimension.
Optimal states

- Clearly, we can find the best r_0.
- Why not search a state ρ_0 with overall maximal r_0?

Optimization problem.

Find ρ and r subject to

maximize: r

such that: $\lambda_{\text{min}}[\Gamma(\rho)] \geq r \sqrt{\frac{d-1}{d}}$, and

$\|R(\rho)\|_1 > 1 + r \sqrt{d}$.

- In principle, can be applied to given dimension.
- Practically, need to choose family of states with few parameters.
Example: Qutrits

Family of states: (contains Horodecki states)

\[
\rho = a |\phi_3 \rangle \langle \phi_3 | + b \sum_{k=0}^{2} |k, k \oplus 1 \rangle \langle k, k \oplus 1 | + c \sum_{k=0}^{2} |k, k \oplus 2 \rangle \langle k, k \oplus 2 | ,
\]

[Baumgartner et al., PRA (2006)]
Example: Qutrits

Family of states: (contains Horodecki states)

$$\rho = a |\phi_3\rangle\langle\phi_3| + b \sum_{k=0}^{2} |k, k \oplus 1\rangle\langle k, k \oplus 1| + c \sum_{k=0}^{2} |k, k \oplus 2\rangle\langle k, k \oplus 2| ,$$

[Baumgartner et al., PRA (2006)]

Can be solved analytically.
Example: Qutrits

Family of states: (contains Horodecki states)

\[
\rho = a |\phi_3\rangle\langle\phi_3| + b \sum_{k=0}^{2} |k, k \oplus 1\rangle\langle k, k \oplus 1| + c \sum_{k=0}^{2} |k, k \oplus 2\rangle\langle k, k \oplus 2| ,
\]

[Baumgartner et al., PRA (2006)]

Can be solved analytically.

Optimal parameters

\[a \approx 0.21289, \ b \approx 0.04834, \ \text{and} \ c \approx 0.21403. \]

\[r_0 \approx 0.02345 \]

• Rank-7 state.

• Value of \(r_0 \) is (basically) tight w.r.t. CCNR and PPT.
Example: Ququarts

Bloch-diagonal states: (contain Smolin state)

\[\rho = \sum_{k} x_k g_k \otimes g_k, \]

where \(g_k = (\sigma_\mu \otimes \sigma_\nu)/2. \)
Example: Ququarts

Bloch-diagonal states: (contain Smolin state)

$$\rho = \sum_k x_k g_k \otimes g_k,$$

where \(g_k = (\sigma_\mu \otimes \sigma_\nu)/2. \)

Optimization problem reduces to 32,768 linear programs.
Example: Ququarts

Bloch-diagonal states: (contain Smolin state)

\[\rho = \sum_k x_k g_k \otimes g_k, \]

where \(g_k = (\sigma_\mu \otimes \sigma_\nu)/2 \).

Optimization problem reduces to 32 768 linear programs.

Feasibility polytope can be determined, has 254 556 vertices.
Example: Ququarts

Bloch-diagonal states: (contain Smolin state)

\[\rho = \sum_k x_k g_k \otimes g_k, \]

where \(g_k = (\sigma_\mu \otimes \sigma_\nu) / 2. \)

Optimization problem reduces to 32,768 linear programs.

Feasibility polytope can be determined, has 254,556 vertices.

Optimal states

- \(\text{rank}(\rho) < 9 \) yields \(r_0 = 0. \)
- \(\text{rank}(\rho) = 9 \) yields \(r_0 \approx 0.0161. \)
- \(\text{rank}(\rho) \geq 10 \) yields \(r_0 \approx 0.0214. \)
How large is 0.02?...some words about statistics

Protocol

/one.osf

Characterize tomography measurements with high precision.

two.osf

Decide critical statistical parameters.

three.osf

Perform state tomography.

/four.osf

Evaluate χ^2-test.

two.osf

Publish or perish.

Statistical parameters:

• distribution of raw data (Poissonian, multinomial, ...)

• preprocessing method ($\text{raw data} \rightarrow x$)

• (Covariance matrix Σ of x)

• Quadratic test function $\hat{t}: x \rightarrow t$

• Threshold significance, yielding critical value $t^* (r_0)$

Methods for the verification of bound entanglement, p. /five.osf
1 Characterize tomography measurements with high precision.
Protocol

1. Characterize tomography measurements with high precision.
2. Decide critical statistical parameters.

Statistical parameters:
- Distribution of raw data (Poissonian, multinomial, ...)
- Preprocessing method (raw data $\mapsto x$)
- Covariance matrix Σ of x
- Quadratic test function $\hat{t}: x \mapsto t$
- Threshold significance, yielding critical value $t^* (r_0)$

Methods for the verification of bound entanglement, p. 15
Protocol

1. Characterize tomography measurements with high precision.
2. Decide critical statistical parameters.
3. Perform state tomography.

Statistical parameters:

- Distribution of raw data (Poissonian, multinomial, ...)
- Preprocessing method (raw data $\mapsto x$)
- Covariance matrix Σ of x
- Quadratic test function $\hat{t}: x \mapsto t$
- Threshold significance, yielding critical value $t^* (r_0)$

Methods for the verification of bound entanglement, p. /one.osf/five.osf
How large is 0.02?... some words about statistics

Protocol

1. Characterize tomography measurements with high precision.
2. Decide critical statistical parameters.
3. Perform state tomography.
4. Evaluate χ^2-test.
Protocol

1. Characterize tomography measurements with high precision.
2. Decide critical statistical parameters.
3. Perform state tomography.
4. Evaluate χ^2-test.
5. Publish or perish.
How large is 0.02?...some words about statistics

Protocol

1. Characterize tomography measurements with high precision.
2. Decide critical statistical parameters.
3. Perform state tomography.
4. Evaluate χ^2-test.
5. Publish or perish.

Statistical parameters:

- distribution of raw data (Poissonian, multinomial, ...)
- preprocessing method (raw data) $\mapsto \mathbf{x}$.
- (Covariance matrix Σ of \mathbf{x}.)
- Quadratic test function $\hat{t}: \mathbf{x} \mapsto t$.
- Threshold significance, yielding critical value $t^*(r_0)$.

Methods for the verification of bound entanglement, p. 15
Choice of test function

A good choice of the test function is

\[\hat{t}(x) = \| \Sigma^{-1/2} [T(\rho_0) - x] \|_2 \]

with \(T(\rho_0) \) the expected value of \(x \) for \(\rho_0 \).
Evaluation of the data

Choice of test function

A good choice of the test function is

$$\hat{t}(x) = \|\Sigma^{-1/2}[T(\rho_0) - x]\|_2$$

with $T(\rho_0)$ the expected value of x for ρ_0.

<arrow> Computable threshold value t^*, so that

$$P[\text{false positives}] \leq P[\hat{t}(x) \leq t^* \mid \|\rho_0 - \rho_{\text{exp}}\| > r_0] \leq \text{threshold significance}$$
Choice of test function

A good choice of the test function is

\[\hat{t}(x) = \|\Sigma^{-1/2}[T(\rho_0) - x]\|_2 \]

with \(T(\rho_0) \) the expected value of \(x \) for \(\rho_0 \).

Computable threshold value \(t^* \), so that

\[
P[\text{false positives}] \leq P[\hat{t}(x) \leq t^* \mid \|\rho_0 - \rho_{\text{exp}}\| > r_0] \\
\leq \text{threshold significance}
\]

Certification of bound entanglement if \(\hat{t}(x) \leq t^* \).
Choice of test function

A good choice of the test function is

\[\hat{t}(x) = \| \Sigma^{-1/2} [T(\rho_0) - x] \|_2 \]

with \(T(\rho_0) \) the expected value of \(x \) for \(\rho_0 \).

\[\text{Computable threshold value } t^*, \text{ so that} \]

\[\begin{align*}
 P[\text{false positives}] & \leq P[\hat{t}(x) \leq t^* | \|\rho_0 - \rho_{\text{exp}}\| > r_0] \\
 & \leq \text{threshold significance}
\end{align*} \]

Certification of bound entanglement if \(\hat{t}(x) \leq t^* \).

Even with \(\|\rho_0 - \rho_{\text{exp}}\| \leq r_0 \), there is a chance that \(\hat{t}(x) > t^* \). These unlucky cases reduce with more samples.
Precision requirements

- Probability p_{fail} to obtain data
 - which does not confirm bound entanglement
 - at a level of significance of $k\sigma$ standard deviations
 - assuming 5% (2.5%) white noise for qutrit (ququart) case.
Concluding remark

Preparation of bound entangled states requires the preparation of high-rank mixed states.
Concluding remark

Preparation of bound entangled states requires the preparation of high-rank mixed states.

Which strategy is admissible?

1. Prepare a purification of ρ and discard auxiliary system.
2. Randomly prepare eigenstates of ρ.
3. Perform tomography of each of the eigenstates of ρ.

Concluding remark

Preparation of bound entangled states requires the preparation of high-rank mixed states.

Which strategy is admissible?

1. Prepare a purification of ρ and discard auxiliary system.
2. Randomly prepare eigenstates of ρ.
3. Perform tomography of each of the eigenstates of ρ.

Sentís, Greiner, Shang, Siewert, K, arXiv:1804.07562