
 
 Useful correlations from bound 

entangled states 
  

Tamás Vértesi  
Atomki, Debrecen 
 
In collaboration with Nicolas Brunner (Uni Geneva), 
Károly Pál (Atomki), and Géza Tóth (UPV/EHU Bilbao) 
 
CEQIP, June 2018 
 
 
 

 
 
 



Abstract  

• Bound entangled states are very weakly entangled states. In 
fact they are so weakly entangled that given an infinite 
number of copies, no pure state entanglement can be distilled 
from them. Nevertheless, they are useful in certain 
applications such as quantum key distribution. Here we show 
that bipartite bound entangled states are also useful in 
metrology and Bell nonlocality. In particular they can 
overcome the classical limit in quantum metrology and can 
give rise to Bell inequality violation.  
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Motivation 

In which applications are entangled states useful for?  
 
Especially: What are very weakly entangled states useful for? 
 
We focus on two areas: 
  
Bell nonlocality and quantum metrology. 
  



Motivation 

Bell nonlocality: 
Entanglement is required to exceed the local classical limit. 
But not all entangled states are nonlocal. E.g. two-qubit Werner 

states: 
 
 
They are entangled for p>1/3, but local for p<0.45 (for any POVM 

measurements). 
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Motivation 

Quantum metrology: 
Entanglement is required to overcome the classical limit. 
But not all entangled states are useful metrologically. Some of 

the cluster states are not useful: e.g. for more than 4 
particles, ring cluster states, as well as more than one 
dimensional cluster states (Hyllus, Gühne, Smerzi 2010). 

 
  



Motivation 

We have seen that relatively highly entangled states can be local 
or useless in metrology.  

But what can we say about the weakly entangled bound 
entangled states?  

First we describe a class of bound entangled states, so-called PPT 
states and then show that some of them are useful both in 
Bell nonlocality and metrology.   

  



Bound entanglement  
Suppose that Alice and Bob share k copies of a mixed state 
         :        
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Bound entanglement  
Suppose that Alice and Bob share k copies of a mixed state 
         :            They can run a distillation protocol (LOCC) to  
                      extract singlet pairs:  
 
 
 
 
 
 
 
 
     
As a result they end up with m<k copies of a singlet state, 
which can be used for quantum information purposes. 
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Bound entanglement  
Every two-qubit entangled state           can be used to  distill 
singlets with the above distillation protocol. Is it also true 
for systems of higher dimension? 
 
Horodeckis proved in 1998 that this is not the case, and that 
there exist noisy entangled states in higher dimensions that 
cannot be distilled by local operations and classical 
operations (LOCC) into the singlet state. 
 
These states are called bound entangled states. The 
smallest example provided by Horodeckis is a 3x3 
dimensional state.     
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Bound entanglement  
Given a state           . How to decide if it is undistillable?  
It is a difficult question in general, since there is no 
restriction on the specific type of LOCC operations or on the 
number of copies used in the distillation protocol.  
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Bound entanglement  
Given a state           . How to decide if it is undistillable?  
It is a difficult question in general, since there is no 
restriction on the specific type of LOCC operations or on the 
number of copies used in the distillation protocol. 
 
Still there is a sufficient condition to undistillability: 
 
If a state is positive under the partial transposition map (the 
state is so-called PPT), then the state is undistillable. 
 
PT map:  
 
Such states, provided they are entangled, are called PPT 
bound entangled states.  
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Bell nonlocality 
 

• Are bound entangled states useful in creating non-local 
correlations, i.e. ones which cannot be simulated by 
classical resources? In particular, is it possible to violate Bell 
inequalities using bound entangled states?   
 

• This is what we explore next. First we discuss a standard  
  Bell nonlocality setup.   



Bell nonlocality 

x=0,…,m-1 y=0,…,m-1 

Alice Bob 

Bell scenario: distant parties (Alice and Bob) choose between m 
different measurements of r outcomes. 

a=0,…,r-1 b=0,…,r-1 

P(a,b|x,y) 
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Experimental data: 
 
 
 
 
 
J.S. Bell: On the einstein-podolsky-rosen paradox, 1964 



Bell nonlocality 

x=0,…,m-1 y=0,…,m-1 

Alice Bob 

Bell scenario: distant parties (Alice and Bob) choose between m 
different measurements of r outcomes. 

a=0,…,r-1 b=0,…,r-1 

P(a,b|x,y) 
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The set of quantum correlations is defined by  



Bell nonlocality 

x=0,…,m-1 y=0,…,m-1 

Alice Bob 

Bell scenario: distant parties (Alice and Bob) choose between m 
different measurements of r outcomes.     defines a classical, 
random source.  

a=0,…,r-1 b=0,…,r-1 

P(a,b|x,y) 

The set of local correlations is defined by  
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Bell nonlocality 

Geometrically, the set L of local distributions is the convex 
hull of a finite number of points: it is a polytope. 
 
The vertices       correspond  
to deterministic strategies,  
In which case         are 0 or 1. 
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Bell nonlocality 

Geometrically, the set L of local distributions is the convex 
hull of a finite number of points: it is a polytope. 
 
Bell inequalities define the limits  
on these local correlations.  
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Bell nonlocality 

Geometrically, the set L of local distributions is the convex 
hull of a finite number of points: it is a polytope. 
 
Every point outside the set L  
is called nonlocal. 
 
Bell inequality is a very useful tool 
to detect nonlocal correlations.  
In the figure, P is detected to be  
nonlocal. 
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Metrology 
 

• Metrology task:                                                        M 
 
 
 
 
 
The basic task is to estimate the parameter      in the 
dynamics. In order to measure      we prepare a probe  
state     , let it evolve, and finally measure the evolved state      
with an operator M.  
      is said to be useful if it gives better performance than 
any separable state. 
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Metrology 
 
The precision of the estimation of     is given by the formula:  
 
 
 
 
Accordingly, the precision of the estimation (left-hand side) 
depends on two things: 
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Metrology 
 
The precision of the estimation of     is given by the formula:  
 
 
 
 
Accordingly, the precision of the estimation (left-hand side) 
depends on two things: 
 
• the sensitivity of the expectation value of M to the change   
  of angle    : the higher the sensitivity, the higher the   
  precision. 
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Metrology 
 
The precision of the estimation of     is given by the formula:  
 
 
 
 
Accordingly, the precision of the estimation (left-hand side) 
depends on two things: 
 
• the sensitivity of the expectation value of M to the change   
  of angle    : the higher the sensitivity, the higher the   
  precision. 
• the variance of M: the larger the variance, the lower the  
  precision. 
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Metrology 
The precision of parameter     is limited by the Cramér-Rao 
bound as 
 
 
where                is the quantum Fisher information:   
 
 
 
 
where                         .  
 
In linear interferometers A are collective operators. They 
are defined as   
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Metrology 
Metrology is linked to the entanglement of      as follows: 
 
Shot noise limit: 
 
The above inequality holds for N-qubit separable states. A 
quantum state is useful in metrology if it violates the above 
inequality. 
 
Heisenberg limit: 
 
where the inequality can be saturated (e.g. with GHZ or 
Dicke states).  
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Useful PPT states 
Sets of metrologically useless states (M), PPT states (PPT), Bell 
local states (L). Separable states (S) are in the intersection of these 
sets.  
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Useful PPT states 

S 

Sets of metrologically useless states (M), PPT states (PPT), Bell 
local states (L). 
 
Q: Is the green region  
nonempty? That is,  
are there PPT states 
which are useful in 
Bell nonlocality? 
 
 
 
 

 
 



Useful PPT states 

S 

Sets of metrologically useless states (M), PPT states (PPT), Bell 
local states (L). 
 
Q: Is the red region  
nonempty? That is,  
are there PPT states 
which are useful in 
metrology? 
 
 
 



Useful PPT states in nonlocality    
Bell nonlocality:  
T. Vértesi, & N. Brunner (2014). Disproving the Peres conjecture by 
showing Bell nonlocality from bound entanglement. Nature 
communications, 5, 5297. 
An example of a bipartite state is presented within the green region. 
Especially: a 3x3 dimensional PPT bound entangled state which 
violates a bipartite Bell inequality. It refutes Peres’ conjecture. 
 



Useful PPT states in nonlocality    
Bell nonlocality:  
T. Vértesi, & N. Brunner (2014). Disproving the Peres conjecture by 
showing Bell nonlocality from bound entanglement. Nature 
communications, 5, 5297. 
An example of a bipartite state is presented within the green region. 
Especially: a 3x3 dimensional PPT bound entangled state which 
violates a bipartite Bell inequality. It refutes Peres’ conjecture. 
 
The state is of rank-4: 
 
It fulfills PT invariance:  
 
This ensures that the state is PPT and therefore undistillable. The 
PPT state is a miminal construction in terms of dimensions, since no 
PPT entangled state exists in dimensions 2x3 or 2x2. 
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Useful PPT states in nonlocality  

x=0,1,2 y=0 

Alice Bob 

Bell inequality (S. Pironio, 2014): 

a=0,1 b=0,1,2 

P(a,b|x,y) 

ABρ



Useful PPT states in nonlocality  

x=0,1,2 y=1 

Alice Bob 

Bell inequality (S. Pironio, 2014): 

a=0,1 b=0,1 

P(a,b|x,y) 
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Useful PPT states in nonlocality  

x=0,1,2 y=1 

Alice Bob 

Bell inequality (S. Pironio, 2014): 

a=0,1 b=0,1 

P(a,b|x,y) 

ABρ

I <= 0 holds for all local P(a,b|x,y) distributions 
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Useful PPT states in nonlocality  

x=0,1,2 y=1 

Alice Bob 

Bell inequality (S. Pironio, 2014): 
 
 
 
 
 
 
 

 
Quantumly: with the use of PPT state above 
 
 
we get larger than zero for the Bell value: 

a=0,1 b=0,1 

P(a,b|x,y) 
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Useful PPT states in nonlocality  
 
The construction above with                                  
is analytical (both the states and measurements can be 
given in a closed form).  
 
Using the SDP technique of Moroder et al. (PRL, 2013),  
one finds the following upper bound: 
  
 
 
This leaves possible room for slightly bigger violation with 
PPT states in 3x3 or in higher dimensions.  
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Useful PPT states in nonlocality  
How did we find the counterexample?  
 
Let us consider a generic bipartite Bell inequality with local 
bound L:  
 
 
Our task is to maximize: 
 
 
 
among d x d PPT states           and d-dimensional 
measurement operators         and         .  
We use a heuristic search, the so-called see-saw method.  
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Useful PPT states in nonlocality  
 
   
 
 
 
 
 
 

  See-saw procedure to maximize: 
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Useful PPT states in nonlocality  
 
   
 
 
 
 
 
 

step 0: pick random ( )ybxa MM || ,

  See-saw procedure to maximize: 
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Useful PPT states in nonlocality  
 
   
 
 
 
 
 
 

step 1:  ( ) PPT|| , ρ→ybxa MM

step 0: pick random ( )ybxa MM || ,

  See-saw procedure to maximize: 
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Useful PPT states in nonlocality  
 
   
 
 
 
 
 
 

step 1:  ( ) PPT|| , ρ→ybxa MM

step 0: pick random ( )ybxa MM || ,

step 2:  ( ) ybxa MM |PPT| , →ρ

  See-saw procedure to maximize: 
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Useful PPT states in nonlocality  
 
   
 
 
 
 
 
 

step 1:  ( ) PPT|| , ρ→ybxa MM

step 0: pick random ( )ybxa MM || ,

step 2:  ( ) ybxa MM |PPT| , →ρ

step 3:  ( ) xayb MM |PPT| , →ρ

  See-saw procedure to maximize: 
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Useful PPT states in nonlocality  
 
   
 
 
 
 
 
 

step 1:  ( ) PPT|| , ρ→ybxa MM

step 0: pick random ( )ybxa MM || ,

step 2:  ( ) ybxa MM |PPT| , →ρ

step 3:  ( ) xayb MM |PPT| , →ρ

step 4: back to step 1  

  See-saw procedure to maximize: 
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Useful PPT states in nonlocality  
Our analytical state disproves Peres conjecture. 
 
Peres Conjecture: Undistillable states admit a local model 
(A. Peres, Foundations of Physics 29, 589-614 (1999)):  
 
”Note that there exist inseparable quantum states that 
cannot be distilled into singlets. In particular, quantum 
states whose partial transpose has no negative eigenvalue 
have that property. Thus, if the preceding conjectures are 
correct, it follows that these peculiar inseparable quantum 
states violate no Bell inequality, and therefore, owing to 
Farkas’s lemma, their statistical properties are compatible 
with the existence of local objective variables.” 
 



Useful PPT states 

S 

Sets of metrologically useless states (M), PPT states (PPT), Bell 
local states (L). 
 
Q: Is the red region  
nonempty? That is,  
are there PPT states 
which are useful in 
metrology? 
 
 
 



Useful PPT states in metrology 
Results: G. Tóth, & T. Vértesi (2018). Quantum states with a 
positive partial transpose are useful for metrology. Physical 
Review Letters, 120, 020506. 
 
We find the following fully PPT states: 
 
 
 
   
 
 
 
   
 
 

System A FQ FQ_sep p_white 

four qubits Jz 4.0088 4 0.0011 

three qubits jz(1) + jz(2) 2.0021 2 0.0005 

2 x 4 jz(1) + jz(2) 2.0033 2 0.0008 



Useful PPT states in metrology 
Results: G. Tóth, & T. Vértesi (2018). Quantum states with a 
positive partial transpose are useful for metrology. Physical 
Review Letters, 120, 020506. 
 
We find the following fully PPT states: 
 
 
 
 
 
Here A is not the usual Jz operator. It has the form: 
  Where                  , where 
                                             with the same number of +1’s and  
      -1’s for even d. 
 

System FQ FQ_sep p_white 

3 x 3 8.0085 8 0.0003 

4 x 4 9.3726 8 0.0382 

12 x 12 11.3618 8 0.0808 

HIIHA ⊗+⊗=
( ),-1,-1,1,1,diag=H



Useful PPT states in metrology 
In case of the 4x4 system, the bound entangled PPT state 
looks as follows. First we define the six states below: 
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Useful PPT states in metrology 
Our PPT state is a convex mixture of the above defined 
states: 
 
 
 
 
where the weights are:  
 
We consider the operator: 
 
with 
 
This state gives FQ = 9.3726 (where FQ_sep = 8).   
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Useful PPT states in metrology  
How did we find the examples?  
 
1) Naive approach. Let us recall the definition for the 
quantum Fisher information: 
 
 
 
where                            .  
 
Let us optimize it over          states. However, it is a hard task 
to maximize a convex function over a convex set. 
  
2) Instead, we use a heuristic search, the so-called see-saw 
method.  
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Useful PPT states in metrology  
 
To this end, we note that the maximum for PPT states can 
alternatively be written as a double optimization: 
 
 
 
 
 
 
The right-hand side expression comes from the relation 
with the Cramér-Rao bound, and the use of the error 
propagation formula.  
 

( )
[ ]
( )2

2

PPTPPT

,
maxmax,max

M

AMi
AF

MQ ∆
=

∈∈

ρ

ρρ
ρ



Useful PPT states in metrology 
 
   
 
 
 
 
 
 

step 0: pick random operators M 

  See-saw procedure to maximize the precision: 
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Useful PPT states in metrology 
 
   
 
 
 
 
 
 

step 0: pick random operators M 

  See-saw procedure to maximize the precision: 
 
 
 
 
                                                                                 this casts as an SDP  
 
                                                                                         
      
 
 
 
  

step 1: maximize over PPT states 
ρ for a given M 
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Useful PPT states in metrology 
 
   
 
 
 
 
 
 

step 0: pick random operators M 

  See-saw procedure to maximize the precision: 
 
 
 
 
                                                                                 this casts as an SDP  
 
                                                                                         
                   M is given by the SLD, 
      e.g. M.G. Paris 2009 
 
 
 
 
  

step 1: maximize over PPT states 
ρ for a given M 

step 2: maximize over M for a 
given PPT state ρ  
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Useful PPT states in metrology 
 
   
 
 
 
 
 
 

step 0: pick random operators M 

  See-saw procedure to maximize the precision: 
 
 
 
 
                                                                                 this casts as an SDP  
 
                                                                                         
                   M is given by the SLD, 
      e.g. M.G. Paris 2009 
 
 
 
 
 The FQ value cannot get worse with the number of iterations. 

step 1: maximize over PPT states 
ρ for a given M 

step 2: maximize over M for a 
given PPT state ρ  

step 3: back to step 1 until 
convergence is achieved 
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Summary 
 
   
 
 
 
 
 
 

   
 
  
 
 
 
 
 

We have shown that PPT bound entangled are useful in 
overcoming the classical limit in quantum metrology and 
they can also be used to create Bell nonlocal correlations. 
 
These results are based on the papers:  
 
T. Vértesi, & N. Brunner (2014). Disproving the Peres 
conjecture by showing Bell nonlocality from bound 
entanglement. Nature communications, 5, 5297. 
 
G. Tóth, & T. Vértesi (2018). Quantum states with a positive 
partial transpose are useful for metrology. Physical Review 
Letters, 120, 020506. 



Thank you! 
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