Composable security in relativistic quantum cryptography

V. Vilasini¹ Christopher Portmann² Lídia del Rio³

1Department of Mathematics, University of York, Heslington, York, YO10 5DD, UK ² Department of Computer Science, ETH Zürich, 8092 Zürich, Switzerland 3Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland

CEQIP, 14th June 2018

Based on: arXiv:1708.00433

MOTIVATION

Start with resources, Build a new one that's secure If parts are secure.

 $\overline{\mathcal{L}}$ Cryptography, Composable security

J Protocols remain secure even when used as a subroutine in others

Start with resources, Build a new one that's secure If parts are secure.

 $\overline{\mathcal{L}}$ Cryptography, Composable security

J Protocols remain secure even when used as a subroutine in others

Agents in space-time Exchanging quantum systems, Building resources. $\overline{\mathcal{L}}$ J Relativistic protocols

Security from relativistic causality. E.g., Kent's 2012 bit commitment protocol

Start with resources, Build a new one that's secure If parts are secure.

 $\overline{\mathcal{L}}$ Cryptography, Composable security

J Protocols remain secure even when used as a subroutine in others

Agents in space-time Exchanging quantum systems, Building resources. $\overline{\mathcal{L}}$ J Relativistic protocols

Security from relativistic causality. E.g., Kent's 2012 bit commitment protocol

No model for this. We propose one here and prove What can, can't be done. \mathcal{L} J What we do

Framework $+$ new possibility, impossibility results

A simple relativistic coin flipping protocol

An unbiased coin flipping resource: c is an independent, uniformly random classical bit.

A simple relativistic coin flipping protocol

An unbiased coin flipping resource: c is an independent, uniformly random classical bit.

Relativistic case: Alice and Bob consist of 2 agents each.

A simple relativistic coin flipping protocol

An unbiased coin flipping resource: c is an independent, uniformly random classical bit.

Relativistic case: Alice and Bob consist of 2 agents each.

$$
A_2^{\mathbf{x}_2} \mathbf{\Theta}_2 \leftarrow (b, (x_2, t_2)) \qquad (a, (x_1, t_1))_{\begin{array}{c}\n\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot\n\end{array}} A_1^{\mathbf{x}_1} \mathbf{\Theta}_1
$$
\n
$$
= x_2 - x_1 = ct_c
$$

Output: $c = a \oplus b$ (in joint causal future) if $|t_1 - t_2| < \frac{t_6}{2}$

(WO)MAN IN THE MIDDLE ATTACK

(WO)MAN IN THE MIDDLE ATTACK

(WO)MAN IN THE MIDDLE ATTACK

• MITM \Rightarrow pairs of parties cannot settle disputes independently i.e. \mathcal{CF} not secure.

(WO)MAN IN THE MIDDLE ATTACK

- MITM \Rightarrow pairs of parties cannot settle disputes independently i.e. \mathcal{CF} not secure.
- \bullet Such an attack can be avoided if parties pre-share a bit commitment resource $\beta \mathcal{C}$.

So what is bit commitment?

So what is bit commitment?

So what is bit commitment?

- Arbitrarily long commitments.
- Committer can choose when to open or not to open at all.
- Relativistic protocols only allow for timed commitments of fixed duration. E.g., this makes protocols like Kent 2012 more like a "channel with delay".

- Non-relativistic protocols: Impossible!
	- **In Stand-alone security: No!** quantum attack (MLC): Mayers, Lo, Chau 1996-1997.
	- \triangleright Composable security: No! classical man in the middle attack (MITM): Canetti et. al 2001.

- **Non-relativistic protocols: Impossible!**
	- **In Stand-alone security:** No! quantum attack (MLC): Mayers, Lo, Chau 1996-1997.
	- \triangleright Composable security: No! classical man in the middle attack (MITM): Canetti et. al 2001.
- **Relativistic protocols: Possible?**
	- \triangleright Stand-alone security: Yes! Kent 2012 secure against MLC attack: Kaniewski et. al 2013.
	- **Composable security:** No? Argument against non-composability of Kent 2012: Kaniewski et. al. 2013.

- Non-relativistic protocols: Impossible!
	- **In Stand-alone security:** No! quantum attack (MLC): Mayers, Lo, Chau 1996-1997.
	- \triangleright Composable security: No! classical man in the middle attack (MITM): Canetti et. al 2001.
- Relativistic protocols: Possible?
	- \triangleright Stand-alone security: Yes! Kent 2012 secure against MLC attack: Kaniewski et. al 2013.
	- **Composable security:** No? Argument against non-composability of Kent 2012: Kaniewski et. al. 2013.

No general framework for modelling composable security of relativistic protocols against classical, quantum, non-signalling adversaries.

- Non-relativistic protocols: Impossible!
	- **In Stand-alone security:** No! quantum attack (MLC): Mayers, Lo, Chau 1996-1997.
	- \triangleright Composable security: No! classical man in the middle attack (MITM): Canetti et. al 2001.
- Relativistic protocols: Possible?
	- \triangleright Stand-alone security: Yes! Kent 2012 secure against MLC attack: Kaniewski et. al 2013.
	- **Composable security:** No? Argument against non-composability of Kent 2012: Kaniewski et. al. 2013.

No general framework for modelling composable security of relativistic protocols against classical, quantum, non-signalling adversaries.

Our Work: Framework+new possibility/impossibility results.

THE FRAMEWORK

Resources (Abstract Cryptography¹)

- A resource is a system with interfaces, one for each player Alice and Bob providing them with certain controls.
- The resources available to the players are given by a tuple $\mathcal{R} = \{R, R_A, R_B\}$, defined by three resources: R when both parties are honest and R_i when party $i \in \{A, B\}$ is dishonest.

Example: coin flipping

Alice
$$
\left\{\begin{array}{c}\n\langle c, P \rangle \\
\hline\n\end{array}\right\}
$$
 CF $\left\{\begin{array}{c}\n\langle c, P' \rangle \\
\hline\n\end{array}\right\}$ Bob

(a) An unbiased resource: CF , CF_A , CF_B same.

 10 . Maurer, R. Renner. The Second Symposium on Innovations in Computer Science. Tsinghua University Press (2011).

Resources (Abstract Cryptography¹)

- A resource is a system with interfaces, one for each player Alice and Bob providing them with certain controls.
- The resources available to the players are given by a tuple $\mathcal{R} = \{R, R_A, R_B\}$, defined by three resources: R when both parties are honest and R_i when party $i \in \{A, B\}$ is dishonest.

Example: coin flipping

Alice
$$
\left\{\n \begin{array}{ccc}\n (c, P) & (c, P') \\
 \hline\n \end{array}\n \right.
$$
 Bob

(a) An unbiased resource: CF , CF_A , CF_B same.

By varying the resources for dishonest parties, we obtain weaker resources.

 10 . Maurer, R. Renner. The Second Symposium on Innovations in Computer Science. Tsinghua University Press (2011).

Resources (Abstract Cryptography¹)

- A resource is a system with interfaces, one for each player Alice and Bob providing them with certain controls.
- The resources available to the players are given by a tuple $\mathcal{R} = \{R, R_A, R_B\}$, defined by three resources: R when both parties are honest and R_i when party $i \in \{A, B\}$ is dishonest.

Example: coin flipping

Alice
$$
\left\{\n \begin{array}{ccc}\n (c, P) & (c, P') \\
 \hline\n \end{array}\n \right.
$$
 Bob

(a) An unbiased resource: CF , CF_A , CF_B same.

By varying the resources for dishonest parties, we obtain weaker resources.

$$
c_o = \begin{cases} b & \text{with prob. p} \\ c & \text{with prob. (1-p)} \end{cases}
$$
 Alice
$$
\begin{cases} (c_o, P) & \text{CF}_B^b \\ p & \text{At } (b, P_2) \\ p & \text{Bob} \end{cases}
$$
 Bob

(b) A p biased resource: The dishonest player can bias the value of honest player's output c_0 towards a chosen bit b.

 10 . Maurer, R. Renner. The Second Symposium on Innovations in Computer Science. Tsinghua University Press (2011).

Distance between resources: distinguishing advantage

Distance between resources: distinguishing advantage

- Security is defined in terms of the indistinguishability of real systems from the corresponding ideal systems.
- $\bullet \mathcal{R} \approx_{\epsilon} \mathcal{S}$ for a class of distinguishers \mathbb{D} if any distinguisher $\mathcal{D} \in \mathbb{D}$ when given black-box access to either one of the resources can distinguish between the two (by outputting 0 or 1) with a maximum probability of $(\epsilon + 1)/2$.

Causality (Causal Boxes²)

Each system (resource, protocol, distinguisher etc.) is modelled as a causal box.

²C. Portmann , C. Matt, U. Maurer , R. Renner, B. Tackmann. IEEE Transactions on Information Theory, Vol. 63, No. 5 (2017).

Causality (Causal Boxes²)

Each system (resource, protocol, distinguisher etc.) is modelled as a causal box.

²C. Portmann , C. Matt, U. Maurer , R. Renner, B. Tackmann. IEEE Transactions on Information Theory, Vol. 63, No. 5 (2017).

²C. Portmann , C. Matt, U. Maurer , R. Renner, B. Tackmann. IEEE Transactions on Information Theory, Vol. 63, No. 5 (2017).

²C. Portmann , C. Matt, U. Maurer , R. Renner, B. Tackmann. IEEE Transactions on Information Theory, Vol. 63, No. 5 (2017).

²C. Portmann , C. Matt, U. Maurer , R. Renner, B. Tackmann. IEEE Transactions on Information Theory, Vol. 63, No. 5 (2017).

²C. Portmann , C. Matt, U. Maurer , R. Renner, B. Tackmann. IEEE Transactions on Information Theory, Vol. 63, No. 5 (2017).

²C. Portmann , C. Matt, U. Maurer , R. Renner, B. Tackmann. IEEE Transactions on Information Theory, Vol. 63, No. 5 (2017).

²C. Portmann , C. Matt, U. Maurer , R. Renner, B. Tackmann. IEEE Transactions on Information Theory, Vol. 63, No. 5 (2017).

²C. Portmann , C. Matt, U. Maurer , R. Renner, B. Tackmann. IEEE Transactions on Information Theory, Vol. 63, No. 5 (2017).

Each system (resource, protocol, distinguisher etc.) is modelled as a causal box.

Composition: Arbitrary composition of CBs is a new CB, irrespecitve of order of composition. Causality: An output of a system can only depend on inputs produced in its causal past.

Can model messages sent in superpositions of orders in space-time.

²C. Portmann , C. Matt, U. Maurer , R. Renner, B. Tackmann. IEEE Transactions on Information Theory, Vol. 63, No. 5 (2017).

 \odot CD = {CD, CD_A, CD_B} is characterised by the 4 space-time points $A \prec A' \prec B' \prec B$

 \vec{t}

 \vec{t}

 \odot CD = {CD, CD_A, CD_B} is characterised by the 4 space-time points $A \prec A' \prec B' \prec B$

• CD: Alice inputs c/q -bit at A , Bob receives the same bit at B

 \vec{t}

 \odot CD = {CD, CD_A, CD_B} is characterised by the 4 space-time points $A \prec A' \prec B' \prec B$

- CD: Alice inputs c/q -bit at A, Bob receives the same bit at B
- \bullet CD_A: Alice inputs c/q-bit at $A' \succ A$, Bob receives the same bit at B

 \vec{t}

 \odot CD = {CD, CD_A, CD_B} is characterised by the 4 space-time points $A \prec A' \prec B' \prec B$

- CD: Alice inputs c/q -bit at A, Bob receives the same bit at B
- \bullet CD_A: Alice inputs c/q-bit at $A' \succ A$, Bob receives the same bit at B
- CD_B : Alice inputs c/q-bit at A, Bob receives the same bit at $B' \prec B$

New resource: channel with delay (\mathcal{CD})

 \odot CD = {CD, CD_A, CD_B} is characterised by the 4 space-time points $A \prec A' \prec B' \prec B$

- CD: Alice inputs c/q -bit at A, Bob receives the same bit at B
- \bullet CD_A: Alice inputs c/q-bit at $A' \succ A$, Bob receives the same bit at B
- CD_B : Alice inputs c/q-bit at A, Bob receives the same bit at $B' \prec B$

trusted region: region within which neither dishonest party can access the bit

RESULTS

Results: Constructibility of \mathcal{CF} from \mathcal{CD}

Theorem 1

Given a classical Channel with Delay resource CD, there exists a protocol $\Pi = \{\Pi_A, \Pi_B\}$ that perfectly constructs an unbiased Coin Flipping resource \mathcal{CF}^{ub} .

Results: Constructibility of \mathcal{CF} from \mathcal{CD}

Theorem 1

Given a classical Channel with Delay resource CD, there exists a protocol $\Pi = \{\Pi_A, \Pi_B\}$ that perfectly constructs an unbiased Coin Flipping resource \mathcal{CF}^{ub} .

Results: Constructibility of \mathcal{CF} from \mathcal{CD}

Theorem 1

Given a classical Channel with Delay resource CD, there exists a protocol $\Pi = \{\Pi_A, \Pi_B\}$ that perfectly constructs an unbiased Coin Flipping resource \mathcal{CF}^{ub} .

Π constructs a stronger resource as compared to Blum's protocol.

Secure against quantum and non-signalling adversaries

Theorem 2

It is impossible to construct, with $\epsilon < \frac{1}{6}(1-p)$, a p-biased Coin Flipping resource between two $\frac{6}{6}$ mutually distrusting parties solely through the exchange of messages through any relativistic or mutually distrusting parties solely through the exchange of messages through any relativistic or non-relativistic protocol, be it classical, quantum or non-signalling.

Theorem 2

It is impossible to construct, with $\epsilon < \frac{1}{6}(1-p)$, a p-biased Coin Flipping resource between two $\frac{6}{6}$ mutually distrusting parties solely through the exchange of messages through any relativistic or mutually distrusting parties solely through the exchange of messages through any relativistic or non-relativistic protocol, be it classical, quantum or non-signalling.

Theorem 2

It is impossible to construct, with $\epsilon < \frac{1}{6}(1-p)$, a p-biased Coin Flipping resource between two $\frac{6}{6}$ mutually distrusting parties solely through the exchange of messages through any relativistic or mutually distrusting parties solely through the exchange of messages through any relativistic or non-relativistic protocol, be it classical, quantum or non-signalling.

Theorem 2

It is impossible to construct, with $\epsilon < \frac{1}{6}(1-p)$, a p-biased Coin Flipping resource between two $\frac{6}{6}$ mutually distrusting parties solely through the exchange of messages through any relativistic or mutually distrusting parties solely through the exchange of messages through any relativistic or non-relativistic protocol, be it classical, quantum or non-signalling.

 \Rightarrow Existing protocols are not secure when composed, even in bounded/noisy storage models.

Results: Impossibility of "improving" a CD

Theorem 3

Given n channel's $CD^1,...,CD^n$ between Alice and Bob, it is impossible to construct with $\epsilon \leq \frac{1}{8}$, a channel CD¹ between the two parties with a larger trusted region than that of all of the channels channels used.

Results: Impossibility of "improving" a CD

Theorem 3

Given n channel's $CD^1,...,CD^n$ between Alice and Bob, it is impossible to construct with $\epsilon \leq \frac{1}{8}$, a channel CD¹ between the two parties with a larger trusted region than that of all of the channels channels used.

Impossible even if honest players send messages in a superposition of orders through the channels.

Results: Impossibility of "improving" a CD

Theorem 3

Given n channel's $CD^1,...,CD^n$ between Alice and Bob, it is impossible to construct with $\epsilon \leq \frac{1}{8}$, a channel CD¹ between the two parties with a larger trusted region than that of all of the channels channels used.

Impossible even if honest players send messages in a superposition of orders through the channels.

- ⇒ Cannot increase trusted region.
- \Rightarrow Cannot increase "effective commitment time" even with *n* channels.

 \bullet Minimal resource(s) required to construct BC , CD ?

- \bullet Minimal resource(s) required to construct BC , CD ?
- Novel possibility and impossibility results in relativistic cryptography, classifying possible and impossible tasks.

- \bullet Minimal resource(s) required to construct BC , CD ?
- Novel possibility and impossibility results in relativistic cryptography, classifying possible and impossible tasks.
- Modelling cryptographic protocols involving superposition of temporal orders and dynamic ordering of messages.

- Minimal resource(s) required to construct BC , CD ?
- Novel possibility and impossibility results in relativistic cryptography, classifying possible and impossible tasks.
- Modelling cryptographic protocols involving superposition of temporal orders and dynamic ordering of messages.
- Physically motivated framework for studying spatio-temporal correlations and their applications to relativistic cryptography.

- Minimal resource(s) required to construct BC , CD ?
- Novel possibility and impossibility results in relativistic cryptography, classifying possible and impossible tasks.
- Modelling cryptographic protocols involving superposition of temporal orders and dynamic ordering of messages.
- Physically motivated framework for studying spatio-temporal correlations and their applications to relativistic cryptography.
- \bullet Generalise to dynamical and indefinite causal structures, e.g., QM+GR.

Thank you for your attention!

References

- U. Maurer, R. Renner. The Second Symposium on Innovations in Computer Science. Tsinghua University Press (2011).
- C. Portmann , C. Matt, U. Maurer , R. Renner, B. Tackmann. IEEE Transactions on Information Theory, Vol. 63, No. 5 (2017).
	- J. Kaniewski. PhD Thesis, Centre for Quantum Technologies, National University of Singapore. arXiv:1512.00602 [quant-ph] (2015).
		- A. Kent. Physical Review Letters, Vol. 109 (2012).
- J. Kaniewski, M. Tomamichel, E. Hänggi, and S. Wehner. IEEE Transactions on Information Theory, Vol. 59, No. 7 (2013).
-
- G. Demay, U. Maurer. Proceedings of the 2013 IEEE International Symposium on Information Theory,Turkey (2013).
- T. Lunghi, J. Kaniewski, F. Bussi`eres, R. Houlmann, M. Tomamichel, S. Wehner, and H. Zbinden. Physical Review Letters, Vol. 115, Pages 030502 (2015).

Additional Slides

Secure against quantum and non-signalling adversaries

Discussion: indefinite causal structures

Causal Boxes (Portmann et. al. 2017)

- **a** global and local order
- some indefinite causal structures (QS)
- quantum and NS (PR boxes)
- physically motivated

Process Matrices (Oreshkov et. al. 2012)

- no global, only local order
- QS+more general causal structures
- **·** local quantum operations
- **a** theoretical

Insights into properties of physical causal structures?

(a) Π A R Π _B \approx ₆ S

• For every resource R , three ideal functionalities are defined: R when both players are honest and R_i when player $i \in \{A, B\}$ is dishonest.

• For every resource R , three ideal functionalities are defined: R when both players are honest and R_i when player $i \in \{A, B\}$ is dishonest.

 S_A

• For every resource R , three ideal functionalities are defined: R when both players are honest and R_i when player $i \in \{A, B\}$ is dishonest.

• For every resource R , three ideal functionalities are defined: R when both players are honest and R_i when player $i \in \{A, B\}$ is dishonest.

(a) Π_A R Π_B \approx _ε S

$$
(b)~R_A~\Pi_B\approx_\varepsilon \sigma_A~S_A
$$

 \approx

(c) Π _A R_B \approx _ε S_B

(a) Π A R Π _B \approx _ε S

• For every resource R , three ideal functionalities are defined: R when both players are honest and R_i when player $i \in \{A, B\}$ is dishonest.

 $≈_ε$

(c) Π_A R_B \approx _ε S_B σ _B

(a) Π A R Π _B \approx _ε S

$$
(b)~R_A~\Pi_B~\approx_\varepsilon~\sigma_A~S_A
$$

 σ_A

 S_A

(c) Π_A R_B \approx S_B σ_B

• For every resource R , three ideal functionalities are defined: R when both players are honest and R_i when player $i \in \{A, B\}$ is dishonest.

• Composable Security: A protocol (Π_A, Π_B) constructs $S = \{S, S_A, S_B\}$ from $\mathcal{R} = \{R, R_A, R_B\}$ securely within ϵ if $\exists \sigma_A$ and σ_B for which the three conditions (a)-(c) hold.