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Games and quantum strategies

Nonlocal games:

E.g. CHSH game: players win if a1 ⊕ a2 = t1t2

How well can the players do given different resources?

Independent players; shared randomness; quantum resources; no-signalling boxes;
communication; . . .

Cooperative game: all players win and lose together, goals are aligned
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Outline

Non-cooperative games and equilibria

Two different quantum resources

Shared quantum correlations (classical “black box” access)
Shared quantum states (quantum access)

Comparing different resources

What equilibria from different resources?
Maximising the social welfare
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Non-cooperative game theory

Reality: Players’ objectives often not aligned:

Players may receive different payoffs
depending on their choices and those of
others

Examples:

Zero-sum games
Prisoner’s dilemma

Extensively studied in game theory

Complex behaviour, Nash equilibria, . . .

Widely applicable
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Example: A three-player game

Question Winning conditions
t1t2t3
100 a1 ⊕ a2 ⊕ a3 = 0
010 a1 ⊕ a2 ⊕ a3 = 0
001 a1 ⊕ a2 ⊕ a3 = 0
111 a1 ⊕ a2 ⊕ a3 = 1

Payoff function

ui(a, t) =


0 if (a, t) ̸∈ W
v0 if ai = 0 and (a, t) ∈ W
v1 if ai = 1 and (a, t) ∈ W.

The strategy (id, id, not) wins 3/4 of the time

Can a player increase their expected gain, potentially at the expense of the others?

What strategy maximises the overall (or average) payoff?

[Groisman, Mc Gettrick, Mhalla, Paw lowski, IEEE JIT (2020)]
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Different types of resources

Base scenario: independent local strategies

Shared resources: correlated advice

Different class of correlations C:
Classical shared random variables

n-partite quantum correlations (CQ)
Belief-invariant (non-signalling) correlations

Full communication

Definition (Solution)

A solution is a tuple (f1, . . . , fn, g1, . . . , gn, C) and induces a correlation

P (a|t) =
∑
s

C(s|f(t))δg(t,s),a
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Quantum resources: quantum states as advice

Players receive part of a shared quantum state as
“advice”, and can measure it directly.

Definition (Quantum solution)

A quantum solution is a tuple
(
ρ,M(1), . . . ,M(n)

)
, with M(i) sets of POVMs {M (i)

ai|ti}ai,ti .

It induces a correlation:
P (a|t) = Tr

[
ρ
(
M

(1)
a1|t1 ⊗ · · · ⊗M

(n)
an|tn

)]
[Auletta, Ferraioli, Rai, Scarpa, Winter, JTCS (2021)]
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Nash equilibria

In game theory, we are interested in equilibrium solutions, where no player can increase their payoff
by unilaterally deviating from a solution.

Player i payoff:∑
a,t ui(a, t)P (a|t)Π(t)

Definition (Nash equilibrium (informal))

A solution is a Nash equilibrium if no player can increase their payoff
∑

a,t ui(a, t)P (a|t)Π(t) by
changing their local strategy (fi, gi) to (νi, µi).
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Simplifying things

It turns out that for most classes of correlations C, we can restrict ourselves to canonical solutions:

Each player sends ti to the mediator and outputs what they receive as ai
P (a|t) = C(a|t)

Definition (Nash equilibrium)

A solution is a Nash equilibrium if, for all players i, all ti, ri ∈ Ti, and all functions
µi : Ti ×Ai → Ai: ∑

t−i,a

ui(a, t)P (a|t) ≥
∑
t−i,a

ui(µi(ai, ti)a−i, tit−i)P (a|rit−i).
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Quantum equilibria

Definition (Quantum equilibrium)

A quantum solution
(
ρ,M(1), . . . ,M(n)

)
, is a quantum equilibrium if, for every player i, for any

type ti and any POVM N (i) = {N (i)
ai }ai∈Ai

:∑
t−i,a

ui(a, t) Tr
[
ρ
(
M

(1)
a1|t1 ⊗ · · · ⊗M

(n)
an|tn

)]
Π(t)

≥
∑
t−i,a

ui(a, t) Tr
[
ρ
(
M

(1)
a1|t1 ⊗ · · · ⊗M

(i−1)
ai−1|ti−1

⊗N (i)
ai

⊗M
(i+1)
ai+1|ti+1

⊗ · · · ⊗M
(n)
an|tn

)]
Π(t).
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Two types of quantum resources

Classical access: advice P ∈ CQ Quantum access

How should we compare these different resources?

Two different levels of access to quantum resources leads to two different notions of equilibria

Two corresponding sets of equilibrium correlations:

Qcorr(G) = {P | P defines a canonical Nash equilibrium and P ∈ CQ} ⊆ CQ
Q(G) = {P | there exists (ρ,M) a quantum equilibrium inducing P} ⊆ CQ
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Comparing quantum resources – Social Welfare

Two different types of quantum resources:

Qcorr(G) = {P | P defines a canonical Nash equilibrium and P ∈ CQ} ⊆ CQ
Q(G) = {P | there exists (ρ,M) a quantum equilibrium inducing P} ⊆ CQ

Can one obtain different equilibria using these different resources?

How good are the equilibria one can obtain in each case?

Definition (Social welfare)

For a game G, the social welfare of a solution inducing a distribution P is

SWG(P ) =
1

n

∑
i

∑
a,t

ui(a, t)P (a|t)Π(t).

Note: In cooperative games, no difference in power between these resources

What about non-cooperative games?
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Quantum access restricts equilibria

Counter-intuitively, allowing the players more control restricts the equilibria they can reach

Theorem

For any game G, Q(G) ⊆ Qcorr(G).

Proof idea.
Any modification of a classical strategy can be represented by an equivalent change of quantum
strategy by relabelling the POVMs used to obtain the correlations.

The quantum families fit within a hierarchy of equilibrium correlations:

Nash(G) ⊂ Corr(G) ⊂ Q(G) ⊆ Qcorr(G) ⊂ B.I.(G) ⊂ Comm(G)).

[Auletta, Ferraioli, Rai, Scarpa, Winter, JTCS (2021)]

Classical access to quantum devices at least as powerful as quantum access

Is the separation strict? Can we obtain better equilibria?
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Pseudo-telepathic solution for the NC(C3) games

Recall the family of three-player NC(C3) games:

Question Winning conditions
t1t2t3
100 a1 ⊕ a2 ⊕ a3 = 0
010 a1 ⊕ a2 ⊕ a3 = 0
001 a1 ⊕ a2 ⊕ a3 = 0
111 a1 ⊕ a2 ⊕ a3 = 1

Payoff function

ui(a, t) =


0 if (a, t) ̸∈ W
v0 if ai = 0 and (a, t) ∈ W
v1 if ai = 1 and (a, t) ∈ W.

We take v0, v1 > 0, v0 + v1 = 2.

Quantum solutions from graph states:

Share a C3 graph state: |Ψ⟩ = CZ(1,2)CZ(2,3)CZ(3,1)(|+⟩ ⊗ |+⟩ ⊗ |+⟩)
Players measure in Z-basis if ti = 0, X-basis if ti = 1

Solution wins the game deterministically

Best classical (correlated) solution wins 3/4 of the time

Induced distribution both a quantum and quantum-correlated equilibrium (in Qcorr(G), Q(G))

[Groisman, McGettrick, Mhalla, Pawlowski, IEEE JSAIT (2020)]
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Tilted Graph-state Solution

Let’s modify the pseudo-telepathic solution a bit:

Share the state |Ψtilt(θ)⟩ = CZ(1,2)CZ(2,3)CZ(3,1)
(
(cos

(
θ
2

)
|0⟩+ sin

(
θ
2

)
|1⟩)⊗ |+⟩ ⊗ |+⟩

)
Player 1 measures (X + Z)/

√
2 if t1 = 0, and (X − Z)/

√
2 if t1 = 1

Players 2 and 3 measure Z if ti = 0 and X if ti = 1

For θ ∈ (π4 ,
3π
4 ) there is an interval of values of v0 (around v0 = 1) such that:

the tilted solution gives a quantum correlated equilibrium

but isn’t a quantum equilibrium (Player 1 can do better by measuring closer to X and Z)

Doesn’t quite show Q(G) ⊊ Qcorr(G)

Could a different quantum solution (ρ,M1,M2,M3) induce the same distribution Ptilt(θ)(a|t)
and be a quantum equilibrium?

Approach: use self-testing
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Self-testing quantum solutions

Intuition: Any solution (ρ,M1,M2,M3) reproducing the correlations Ptilt(θ) must be equivalent
up to local isometries to the tilted solution.

The self-testing isometries must preserve the equilibrium condition

Self-testing the tilted solution

Let ( |ψ̃⟩⟨ψ̃| ,M̃1,M̃2,M̃3) be an uncharacterised solution inducing Ptilt(θ) with θ ∈ (π4 ,
3π
4 ), and

defining Ã
(i)
ti = M̃

(i)
0|ti − M̃

(i)
1|ti and

X̃1 =
Ã

(1)
0 + Ã

(1)
1√

2
, Z̃1 =

Ã
(1)
0 − Ã

(1)
1√

2
, X̃2 = Ã

(2)
1 , Z̃2 = Ã

(2)
0 , X̃3 = Ã

(3)
1 , Z̃3 = Ã

(3)
0 .

Then there exists a local isometry Φ = Φ1 ⊗ Φ2 ⊗ Φ3 such that

Φ[ |ψ̃⟩] = |Ψtilt(θ)⟩ ⊗ |junk⟩ Φ[X̃i |ψ̃⟩] = (Xi |Ψtilt(θ)⟩)⊗ |junk⟩
Φ[Z̃i |ψ̃⟩] = (Zi |Ψtilt(θ)⟩)⊗ |junk⟩ Φ[X̃iZ̃i |ψ̃⟩] = (XiZi |Ψtilt(θ)⟩)⊗ |junk⟩ .

Proof similar to graph state self-test of [Baccari, Augusiak, Šupić, Tura, Aćın, PRL (2020)]
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(i)
ti = M̃

(i)
0|ti − M̃

(i)
1|ti and

X̃1 =
Ã

(1)
0 + Ã

(1)
1√

2
, Z̃1 =

Ã
(1)
0 − Ã

(1)
1√

2
, X̃2 = Ã

(2)
1 , Z̃2 = Ã

(2)
0 , X̃3 = Ã

(3)
1 , Z̃3 = Ã

(3)
0 .
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Self-testing: Preserving equilibria

We can reduce question of whether Ptilt(θ) ∈ Q(G) to whether the tilted solution is a quantum
equilibrium:

Theorem

Let G be a tripartite game and θ ∈ (π4 ,
3π
4 ). Then Ptilt(θ) ∈ Q(G) if and only if the tilted solution

( |Ψtilt(θ)⟩⟨Ψtilt(θ)| ,M1,M2,M3) is a quantum equilibrium.

Nontrivial direction to prove: If some solution (ρ,M1,M2,M3) inducing Ptilt(θ) ∈ Q(G) is a
quantum equilibrium, then the tilted solution must be too.

Assume for contradiction that tilted solution not an equilibrium: player i can improve their

payoff by choosing POVM {N (i)
ai } on input ti.

We can decompose N
(i)
ai = α1i + βXi + γZi + ϵiXiZi

Then Ñ
(i)
ai = α1̃i + βX̃i + γZ̃i + ϵiX̃iZ̃i gives a POVM in uncharacterised scenario

From self testing, {Ñ (i)
ai } also improves payoff, so initial solution not an equilibrium either.

Classical access to quantum resources gives strictly more equilibria
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Comparing social welfare

Does more equilibria mean better equilibria?
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Graph state solution better than tilted solution for all θ

Can one do better?
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Improving social welfare

Pseudo-telepathy: Graph state solution wins all the time

Can we do better by losing some of the time?

What is the maximal social welfare obtainable by the different types of equilibria?

Maximising social welfare

max
P

SWG(P ) =
1

n

∑
a,t

∑
i

ui(a, t)P (a|t)Π(t),

where the maximisation is either over Qcorr(G) ⊆ CQ or Q(G) ⊆ CQ

Question: how to characterise these sets of equilibria?

Use numerical and SDP methods to compute upper and lower bounds on the maximum social
welfare.
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Lower bounds: See-saw optimisation

Key observation: checking if (ρ,M1, . . . ,Mn) is a quantum equilibrium is an SDP

Constructive method by iterating over each party

See-saw iteration over CQ

max
Mn

· · ·max
M1

max
ρ

SWG(P ) =
1

n

∑
a,t

∑
i

ui(a, t) Tr
[
ρ
(
M

(1)
a1|t1 ⊗ · · · ⊗M

(n)
an|tn

)]
Π(t)

To converge to an equilibrium, we then add:

Quantum equilibria: Q(G)

Each player tries to optimise their own payoff

max
M(N)

· · ·max
M(1)

∑
a,t

ui(a, t) Tr
[
ρ
(
M

(1)
a1|t1 ⊗ · · · ⊗M

(n)
an|tn

)]
Π(t).

Nash equilibria: Qcorr(G)

The (finite) inequalities constraining Nash equilibria.
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Upper bounds: NPA hierarchy

Main difficulty computing upper bounds: there is no easy way to characterise the set of quantum
correlations CQ.

NPA hierarchy

Convergent hierarchy of SDP constraints to test if a distribution is in CQ, approximating it from
the outside (upper bounds).

+

Nash equilibrium

Finite number of linear constraint to test if a probability distribution is a Nash equilibrium.

max
P∈Q̃corr(G)

SWG(P ) =
1

n

∑
a,t

∑
i

ui(a, t)P (a|t)Π(t).

[Navascues, Pironio, Acin, NJP (2008)]
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Social Welfare in NC(C3) games
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Social Welfare in some five-player games
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Social Welfare in some five-player games
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Summary

Non-cooperative games as a portal to adress different types of quantum resources:

Classical access to a quantum resources: Qcorr(G)
Quantum access to a quantum resource: Q(G)

Counterintuitively, quantum access gives less equilibria: Q(G) ⊊ Qcorr(G)

Strict separation in terms of social welfare proven using self-testing

Better social welfare if we accept to lose sometimes

Better equilibria using classical access to quantum resources

Open questions and ongoing work:

Can the NPA hierarchy be adapted to give upper bounds on Q(G)?

Intermediate settings (with classical or quantum access for different players)

Understanding the power of delegated quantum measurements

arXiv:2211.01687
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Thank you for your attention!

Questions?
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Preservation of equilibria when self-testing

Assuming that the tilted solution is not an equilibrium but Ptilt(θ) ∈ Q(G):

∑
t−i,a

ui(a, t) tr
[
(M̃

(1)
a1|t1 ⊗ · · · ⊗ M̃

(n)
an|tn) ρ̃

]
Π(t)

=
∑
t−i,a

ui(a, t) tr
[
(M

(1)
a1|t1 ⊗ · · · ⊗M

(n)
an|tn) ρtilt(θ)

]
Π(t)

<
∑
t−i,a

ui(a, t)tr
[
(M

(1)
a1|t1 ⊗ · · · ⊗M

(i−1)
ai−1|ti−1

⊗N (i)
ai

⊗M
(i+1)
ai+1|ti+1

⊗

⊗ · · · ⊗M
(n)
an|tn) ρtilt(θ) ⊗ |ξ⟩⟨ξ|

]
Π(t)

=
∑
t−i,a

ui(a, t) tr
[
Φ[(M̃

(1)
a1|t1 ⊗ · · · ⊗ M̃

(i−1)
ai−1|ti−1

⊗ Ñ (i)
ai

⊗ M̃
(i+1)
ai+1|ti+1

⊗ · · · ⊗ M̃
(n)
an|tn) ρ̃]

]
Π(t)

=
∑
t−i,a

ui(a, t) tr
[
(M̃

(1)
a1|t1 ⊗ · · · ⊗ M̃

(i−1)
ai−1|ti−1

⊗ Ñ (i)
ai

⊗ M̃
(i+1)
ai+1|ti+1

⊗ · · · ⊗ M̃
(n)
an|tn) ρ̃

]
Π(t),

a contradiction.
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