Bell nonlocality is not sufficient for the security of standard device-independent quantum key distribution protocols

Máté Farkas - ICFO, Barcelona \longrightarrow University of York
6 September, 2023 - 18th CEQIP workshop, Smolenice
joint work with Maria Balanzó-Juandó, Karol Łukanowski, Jan Kołodyński and Antonio Acín
Phys. Rev. Lett. 127, 050503

Teiko has a problem

Quantum advantage

\Downarrow

Non-classical phenomenon

Quantum advantage

\Uparrow ?

Non-classical phenomenon

Quantum advantage

Device-independent quantum key distribution

$$
\Uparrow ?
$$

Non-classical phenomenon
Bell nonlocality

Bell nonlocality

- Quantum set:

$$
\mathcal{Q}=\left\{p(a, b \mid x, y)=\operatorname{tr}\left[\rho\left(A_{a}^{x} \otimes B_{b}^{y}\right)\right]\right\}
$$

- Convex set

- Quantum set:

$$
\mathcal{Q}=\left\{p(a, b \mid x, y)=\operatorname{tr}\left[\rho\left(A_{a}^{x} \otimes B_{b}^{y}\right)\right]\right\}
$$

- Convex set
- Local set:

$$
\begin{aligned}
\mathcal{L}=\{p(a, b \mid x, y) & =\int_{\Lambda} p_{A}(a \mid x, \lambda) p_{B}(b \mid y, \lambda) \mathrm{d} \mu(\lambda) \\
& \left.=\sum_{\lambda^{\prime}} p_{\Lambda^{\prime}}\left(\lambda^{\prime}\right) \delta_{a, f_{A}\left(x, \lambda^{\prime}\right)} \delta_{b, f_{B}\left(y, \lambda^{\prime}\right)}\right\}
\end{aligned}
$$

- Quantum set:

$$
\mathcal{Q}=\left\{p(a, b \mid x, y)=\operatorname{tr}\left[\rho\left(A_{a}^{X} \otimes B_{b}^{y}\right)\right]\right\}
$$

- Convex set
- Local set:

$$
\begin{aligned}
\mathcal{L}=\{p(a, b \mid x, y) & =\int_{\Lambda} p_{A}(a \mid x, \lambda) p_{B}(b \mid y, \lambda) \mathrm{d} \mu(\lambda) \\
& \left.=\sum_{\lambda^{\prime}} p_{\Lambda^{\prime}}\left(\lambda^{\prime}\right) \delta_{a, f_{A}\left(x, \lambda^{\prime}\right)} \delta_{b, f_{B}\left(y, \lambda^{\prime}\right)}\right\}
\end{aligned}
$$

- Convex polytope, $\mathcal{L} \subsetneq \mathcal{Q}$

Device-independent quantum key distribution (DIQKD)

DIQKD - idea

Key Distribution

$$
K_{A}=K_{B}
$$

K_{A} and K_{B} are random

DIQKD - idea

Quantum

Key Distribution

$$
K_{A}=K_{B}
$$

K_{A} and K_{B} are random

$$
\left|\psi_{-}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
$$

DIQKD - idea

$$
K_{A}=K_{B}
$$

K_{A} and K_{B} are random

$$
p_{A B}(a, b \mid x, y)=\operatorname{tr}\left[\rho\left(A_{a}^{x} \otimes B_{b}^{y}\right)\right]
$$

DIQKD based on the CHSH inequality ${ }^{1}$

${ }^{1}$ Acín, Brunner, Gisin, Massar, Pironio, Scarani, Phys. Rev. Lett. 98, 230501

DIQKD based on the CHSH inequality ${ }^{1}$

$$
x, a, b \in\{0,1\}, y \in\{0,1,2\}
$$

Settings 0 and 1 : certifying the setup (CHSH)

$$
\rho=\left|\psi_{-}\right\rangle\left\langle\psi_{-}\right|, \quad A_{0}^{0}=|0\rangle\langle 0|, \quad A_{1}^{0}=|1\rangle\langle 1|
$$

${ }^{1}$ Acín, Brunner, Gisin, Massar, Pironio, Scarani, Phys. Rev. Lett. 98, 230501

DIQKD based on the CHSH inequality ${ }^{1}$

$$
x, a, b \in\{0,1\}, y \in\{0,1,2\}
$$

Settings 0 and 1 : certifying the setup (CHSH)

$$
\rho=\left|\psi_{-}\right\rangle\left\langle\psi_{-}\right|, \quad A_{0}^{0}=|0\rangle\langle 0|, \quad A_{1}^{0}=|1\rangle\langle 1|
$$

Setting 2 for Bob: $B_{0}^{2}=|0\rangle\langle 0|, B_{1}^{2}=|1\rangle\langle 1|$

[^0]
DIQKD based on the CHSH inequality ${ }^{1}$

$$
x, a, b \in\{0,1\}, y \in\{0,1,2\}
$$

Settings 0 and 1 : certifying the setup (CHSH)

$$
\rho=\left|\psi_{-}\right\rangle\left\langle\psi_{-}\right|, \quad A_{0}^{0}=|0\rangle\langle 0|, \quad A_{1}^{0}=|1\rangle\langle 1|
$$

Setting 2 for Bob: $B_{0}^{2}=|0\rangle\langle 0|, B_{1}^{2}=|1\rangle\langle 1|$
$x=0$ and $y=2$: perfect randomness, perfect correlation
${ }^{1}$ Acín, Brunner, Gisin, Massar, Pironio, Scarani, Phys. Rev. Lett. 98, 230501

Standard DIQKD protocol

$$
\begin{gathered}
n \text { rounds } \\
a_{1}, a_{2}, \ldots, a_{n} \\
b_{1}, b_{2}, \ldots, b_{n} \\
n \rightarrow \infty
\end{gathered}
$$

Standard DIQKD protocol

$$
\begin{gathered}
n \text { rounds } \\
a_{1}, a_{2}, \ldots, a_{n} \\
b_{1}, b_{2}, \ldots, b_{n} \\
n \rightarrow \infty \\
p_{A B}(a, b \mid x, y)
\end{gathered}
$$

Standard DIQKD protocol

$$
\begin{gathered}
n \text { rounds } \\
a_{1}, a_{2}, \ldots, a_{n} \\
b_{1}, b_{2}, \ldots, b_{n} \\
n \rightarrow \infty \\
p_{A B}(a, b \mid x, y)
\end{gathered}
$$

input announcement standard protocol

Standard DIQKD protocol

$$
\begin{gathered}
n \text { rounds } \\
a_{1}, a_{2}, \ldots, a_{n} \\
b_{1}, b_{2}, \ldots, b_{n} \\
n \rightarrow \infty \\
p_{A B}(a, b \mid x, y)
\end{gathered}
$$

input announcement standard protocol

$$
\begin{gathered}
K_{A}, K_{B} \\
\text { key rate: } r \\
\frac{1}{n} I\left(K_{A}: K_{B}\right)>r-\epsilon \\
\frac{1}{n} I\left(\left\{m_{j}^{A}\right\}_{j},\left\{m_{k}^{B}\right\}_{k}, E: K_{A}\right)<\epsilon
\end{gathered}
$$

Eavesdropping - individual attacks

n rounds

$$
\begin{gathered}
\rho_{1}, \rho_{2}, \ldots, \rho_{n} \\
\rho=\frac{1}{n} \sum_{j} \rho_{j} \\
p_{A B}(a, b \mid x, y)=\operatorname{tr}\left[\rho\left(A_{a}^{x} \otimes B_{b}^{y}\right)\right]
\end{gathered}
$$

Eavesdropping - individual attacks

n rounds

$$
\begin{gathered}
\rho_{1}, \rho_{2}, \ldots, \rho_{n} \\
\rho=\frac{1}{n} \sum_{j} \rho_{j} \\
p_{A B}(a, b \mid x, y)=\operatorname{tr}\left[\rho\left(A_{a}^{x} \otimes B_{b}^{y}\right)\right]
\end{gathered}
$$

Eavesdropper's information:

$$
\left.\begin{array}{c}
\rho_{j}, A_{a}^{x}, B_{b}^{y} \\
x_{k_{j}}, y_{k_{j}}
\end{array}\right\} e_{k_{j}}
$$

Eavesdropping - individual attacks

n rounds

$$
\begin{gathered}
\rho_{1}, \rho_{2}, \ldots, \rho_{n} \\
\rho=\frac{1}{n} \sum_{j} \rho_{j} \\
p_{A B}(a, b \mid x, y)=\operatorname{tr}\left[\rho\left(A_{a}^{x} \otimes B_{b}^{y}\right)\right]
\end{gathered}
$$

Eavesdropper's information:

$$
\left.\begin{array}{l}
\rho_{j}, A_{a}^{x}, B_{b}^{y} \\
x_{k_{j}}, y_{k_{j}}
\end{array}\right\} e_{k_{j}}
$$

$$
p_{A B E}(a, b, e \mid x, y)
$$

Key extraction: $m_{1}^{A}, \ldots, m_{s}^{A}, m_{1}^{B}, \ldots, m_{s}^{B}$

Upper bounds

Upper bounds

Quantum correlations

$$
p_{A B}(a, b \mid x, y)
$$

Which ones are useful?

Upper bounds

Quantum correlations

$$
p_{A B}(a, b \mid x, y)
$$

Which ones are useful?

Standard DIQKD
$\Longrightarrow p_{A B E}(a, b, e \mid x, y)$

Upper bounds

Quantum correlations

$$
p_{A B}(a, b \mid x, y)
$$

Which ones are useful?

Standard DIQKD
$\Longrightarrow p_{A B E}(a, b, e \mid x, y)$

Classical KD results

$$
r \leq I(A: B \downarrow E)
$$

Bell nonlocality is necessary

$$
\begin{gathered}
p_{A B}^{\mathcal{L}}(a, b \mid x, y)= \\
\sum_{\lambda} p_{\Lambda}(\lambda) \delta_{a, f_{A}(x, \lambda)} \delta_{b, f_{B}(y, \lambda)}
\end{gathered}
$$

Bell nonlocality is not sufficient

Specific eavesdropping attack

Specific (large) family of nonlocal correlations

The convex combination attack

Observed correlation:

$$
p=q_{\mathcal{L}} p^{\mathcal{L}}+\left(1-q_{\mathcal{L}}\right) p^{\mathcal{N} \mathcal{L}}
$$

The convex combination attack

Observed correlation:

$$
p=q_{\mathcal{L}} p^{\mathcal{L}}+\left(1-q_{\mathcal{L}}\right) p^{\mathcal{N} \mathcal{L}}
$$

$$
\rho=q_{\mathcal{L}} \rho^{\mathcal{L}}+\left(1-q_{\mathcal{L}}\right) \rho^{\mathcal{N L}}
$$

The convex combination attack

Observed correlation:

$$
\begin{aligned}
p & =q_{\mathcal{L}} p^{\mathcal{L}}+\left(1-q_{\mathcal{L}}\right) p^{\mathcal{N L}} \\
\rho & =q_{\mathcal{L}} \rho^{\mathcal{L}}+\left(1-q_{\mathcal{L}}\right) \rho^{\mathcal{N L}} \\
& \Longrightarrow p_{A B E}(a, b, e \mid x, y)
\end{aligned}
$$

The convex combination attack

Observed correlation:

$$
\begin{aligned}
p & =q_{\mathcal{L}} p^{\mathcal{L}}+\left(1-q_{\mathcal{L}}\right) p^{\mathcal{N L}} \\
\rho & =q_{\mathcal{L}} \rho^{\mathcal{L}}+\left(1-q_{\mathcal{L}}\right) \rho^{\mathcal{N L}} \\
& \Longrightarrow p_{A B E}(a, b, e \mid x, y)
\end{aligned}
$$

Maximising $q_{\mathcal{L}}$: linear program

The convex combination attack

Observed correlation:

$$
\begin{aligned}
p & =q_{\mathcal{L}} p^{\mathcal{L}}+\left(1-q_{\mathcal{L}}\right) p^{\mathcal{N L}} \\
\rho & =q_{\mathcal{L}} \rho^{\mathcal{L}}+\left(1-q_{\mathcal{L}}\right) \rho^{\mathcal{N L}} \\
& \Longrightarrow p_{A B E}(a, b, e \mid x, y)
\end{aligned}
$$

Maximising $q_{\mathcal{L}}$: linear program

$$
r \leq I(A: B \downarrow E)
$$

Protocols with Werner states and projective measurements

$$
p_{A B}(a, b \mid x, y)=\operatorname{tr}\left[\left(v\left|\psi_{-}\right\rangle\left\langle\psi_{-}\right|+(1-v) \frac{\mathbb{I}}{4}\right)\left(A_{a}^{x} \otimes B_{b}^{y}\right)\right]
$$

Designolle, Iommazzo, Besançon, Knebel, Gelß, Pokutta, arXiv:2302.04721 (see poster no. 5, Sébastien Designolle)

Convex combination attack

$$
\begin{aligned}
& \rho^{\mathcal{L}}=v_{\mathcal{L}}\left|\psi_{-}\right\rangle\left\langle\psi_{-}\right|+\left(1-v_{\mathcal{L}}\right) \frac{\mathbb{I}}{4}, \rho^{\mathcal{N L}}=\left|\psi_{-}\right\rangle\left\langle\psi_{-}\right| \\
& q_{\mathcal{L}}=(1-v) /\left(1-v_{\mathcal{L}}\right)
\end{aligned}
$$

Implications and limitations

All the commonly used protocols become insecure while still exhibiting nonlocality

Implications and limitations

All the commonly used protocols become insecure while still exhibiting nonlocality

Implications and limitations

All the commonly used protocols become insecure while still exhibiting nonlocality

What if only one party announces their settings?

Implications and limitations

All the commonly used protocols become insecure while still exhibiting nonlocality

What if only one party announces their settings?
Multiple parties? (see poster no. 22, Jan Nöller)

Implications and limitations

All the commonly used protocols become insecure while still exhibiting nonlocality

What if only one party announces their settings?
Multiple parties? (see poster no. 22, Jan Nöller)

[^0]: ${ }^{1}$ Acín, Brunner, Gisin, Massar, Pironio, Scarani, Phys. Rev. Lett. 98, 230501

