Bell nonlocality is not sufficient for the security of standard device-independent quantum key distribution protocols

Máté Farkas – ICFO, Barcelona \longrightarrow University of York 6 September, 2023 – 18th CEQIP workshop, Smolenice

joint work with Maria Balanzó-Juandó, Karol Łukanowski, Jan Kołodyński and Antonio Acín *Phys. Rev. Lett.* **127**, 050503

Teiko has a problem

Quantum advantage

Non-classical phenomenon

 \downarrow

Quantum advantage

↑ ?

Non-classical phenomenon

Non-classical phenomenon Bell nonlocality

Bell nonlocality

• Quantum set:

$$\mathcal{Q} = \{ p(a, b | x, y) = tr[\rho(A_a^x \otimes B_b^y)] \}$$

• Quantum set:

$$\mathcal{Q} = \{p(a, b|x, y) = tr[\rho(A_a^x \otimes B_b^y)]\}$$

• Local set:

$$\begin{split} \mathcal{L} &= \Big\{ p(a, b | x, y) = \int_{\Lambda} p_A(a | x, \lambda) p_B(b | y, \lambda) \mathrm{d}\mu(\lambda) \\ &= \sum_{\lambda'} p_{\Lambda'}(\lambda') \delta_{a, f_A(x, \lambda')} \delta_{b, f_B(y, \lambda')} \Big\} \end{split}$$

• Quantum set:

$$\mathcal{Q} = \{p(a, b|x, y) = tr[\rho(A_a^x \otimes B_b^y)]\}$$

• Local set:

$$egin{aligned} \mathcal{L} &= \Big\{ p(a,b|x,y) = \int_{\Lambda} p_{A}(a|x,\lambda) p_{B}(b|y,\lambda) \mathrm{d} \mu(\lambda) \ &= \sum_{\lambda'} p_{\Lambda'}(\lambda') \delta_{a,f_{A}(x,\lambda')} \delta_{b,f_{B}(y,\lambda')} \Big\} \end{aligned}$$

• Convex polytope, $\mathcal{L} \subsetneq \mathcal{Q}$

Device-independent quantum key distribution (DIQKD)

 $K_A = K_B$

 K_A and K_B are random

$$K_A = K_E$$

 K_A and K_B are random

$$|\psi_{-}\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$$

DIQKD – idea

$$K_A = K_E$$

K_A and K_B are random

$$p_{AB}(a,b|x,y) = \operatorname{tr}\left[\rho(A_a^x \otimes B_b^y)\right]$$

 $x, a, b \in \{0, 1\}, y \in \{0, 1, 2\}$

¹Acín, Brunner, Gisin, Massar, Pironio, Scarani, Phys. Rev. Lett. 98, 230501

 $x, a, b \in \{0, 1\}, y \in \{0, 1, 2\}$ Settings 0 and 1: certifying the setup (CHSH)

$$\rho = |\psi_{-}\rangle\langle\psi_{-}|, \quad A_{0}^{0} = |0\rangle\langle0|, \quad A_{1}^{0} = |1\rangle\langle1|$$

¹Acín, Brunner, Gisin, Massar, Pironio, Scarani, Phys. Rev. Lett. 98, 230501

 $x, a, b \in \{0, 1\}, y \in \{0, 1, 2\}$ Settings 0 and 1: certifying the setup (CHSH) $\rho = |\psi_-\rangle\langle\psi_-|, \quad A_0^0 = |0\rangle\langle0|, \quad A_1^0 = |1\rangle\langle1|$ Setting 2 for Bob: $B_0^2 = |0\rangle\langle0|, B_1^2 = |1\rangle\langle1|$

¹Acín, Brunner, Gisin, Massar, Pironio, Scarani, Phys. Rev. Lett. 98, 230501

 $x, a, b \in \{0, 1\}, y \in \{0, 1, 2\}$ Settings 0 and 1: certifying the setup (CHSH)

$$ho = |\psi_{-}\rangle\langle\psi_{-}|, \quad A_{0}^{0} = |0\rangle\langle0|, \quad A_{1}^{0} = |1\rangle\langle1|$$

Setting 2 for Bob: $B_0^2 = |0\rangle\langle 0|, B_1^2 = |1\rangle\langle 1|$ x = 0 and y = 2: perfect randomness, perfect correlation

¹Acín, Brunner, Gisin, Massar, Pironio, Scarani, Phys. Rev. Lett. 98, 230501

- n rounds a_1, a_2, \dots, a_n b_1, b_2, \dots, b_n $n \to \infty$
- $p_{AB}(a, b|x, y)$

n rounds a_1, a_2, \dots, a_n b_1, b_2, \dots, b_n $n \to \infty$

$$p_{AB}(a, b|x, y)$$

input announcement standard protocol

- n rounds a_1, a_2, \dots, a_n b_1, b_2, \dots, b_n $n \to \infty$
- $p_{AB}(a, b|x, y)$
- input announcement standard protocol

```
\begin{array}{c} K_A, K_B \\ \textbf{key rate: } r \\ \frac{1}{n}I(K_A:K_B) > r - \epsilon \\ \frac{1}{n}I(\{m_j^A\}_j, \{m_k^B\}_k, \textbf{E}:K_A) < \epsilon \end{array}
```

Eavesdropping – individual attacks

n rounds

$\rho_{1}, \rho_{2}, \dots, \rho_{n}$ $\rho = \frac{1}{n} \sum_{j} \rho_{j}$ $p_{AB}(a, b|x, y) = tr[\rho(A_{a}^{x} \otimes B_{b}^{y})]$

Eavesdropping – individual attacks

n rounds $\rho_1, \rho_2, \dots, \rho_n$ $\rho = \frac{1}{n} \sum_j \rho_j$ $p_{AB}(a, b|x, y) = tr[\rho(A_a^x \otimes B_b^y)]$

Eavesdropper's information:

$$\begin{array}{c} \rho_j, A_a^x, B_b^y \\ x_{k_j}, y_{k_j} \end{array} e_{k_j} \\ P_{ABF}(a, b, e|x, y) \end{array}$$

Eavesdropping – individual attacks

n rounds $\rho_1, \rho_2, \ldots, \rho_n$ $\rho = \frac{1}{n} \sum_{i} \rho_{i}$ $p_{AB}(a, b|x, y) = tr[\rho(A^x \otimes B^y_b)]$ Eavesdropper's information: $\left.\begin{array}{c}\rho_{j},A_{a}^{x},B_{b}^{y}\\x_{k_{j}},y_{k_{i}}\end{array}\right\}e_{k_{j}}$ $p_{ABF}(a, b, e|x, y)$ Key extraction: $m_1^A, \ldots, m_c^A, m_1^B, \ldots, m_c^B$

Quantum correlations $p_{AB}(a, b|x, y)$ Which ones are useful?

Quantum correlations $p_{AB}(a, b|x, y)$ Which ones are useful?

Standard DIQKD $\implies p_{ABE}(a, b, e|x, y)$

Quantum correlations $p_{AB}(a, b|x, y)$ Which ones are useful?

Standard DIQKD $\implies p_{ABE}(a, b, e|x, y)$

Classical KD results $r \leq I(A : B \downarrow E)$

Bell nonlocality is necessary

 $p_{AB}^{\mathcal{L}}(a, b|x, y) = \sum_{\lambda} p_{\Lambda}(\lambda) \delta_{a, f_{A}(x, \lambda)} \delta_{b, f_{B}(y, \lambda)}$

Bell nonlocality is not sufficient

Specific eavesdropping attack

Specific (large) family of nonlocal correlations

Observed correlation: $p = q_{\mathcal{L}} p^{\mathcal{L}} + (1 - q_{\mathcal{L}}) p^{\mathcal{NL}}$

Observed correlation: $p = q_{\mathcal{L}} p^{\mathcal{L}} + (1 - q_{\mathcal{L}}) p^{\mathcal{NL}}$

 $ho = oldsymbol{q}_{\mathcal{L}}
ho^{\mathcal{L}} + (1 - oldsymbol{q}_{\mathcal{L}})
ho^{\mathcal{N}\mathcal{L}}$

Observed correlation: $p = q_{\mathcal{L}} p^{\mathcal{L}} + (1 - q_{\mathcal{L}}) p^{\mathcal{NL}}$

$$ho = q_{\mathcal{L}}
ho^{\mathcal{L}} + (1 - q_{\mathcal{L}})
ho^{\mathcal{NL}}$$

$$\implies p_{ABE}(a, b, e|x, y)$$

Observed correlation: $p = q_{\mathcal{L}} p^{\mathcal{L}} + (1 - q_{\mathcal{L}}) p^{\mathcal{NL}}$

- $\rho = q_{\mathcal{L}} \rho^{\mathcal{L}} + (1 q_{\mathcal{L}}) \rho^{\mathcal{NL}}$
 - $\implies p_{ABE}(a, b, e|x, y)$

Maximising $q_{\mathcal{L}}$: linear program

Observed correlation: $p = q_{\mathcal{L}} p^{\mathcal{L}} + (1 - q_{\mathcal{L}}) p^{\mathcal{NL}}$

$$\rho = q_{\mathcal{L}} \rho^{\mathcal{L}} + (1 - q_{\mathcal{L}}) \rho^{\mathcal{NL}}$$

$$\implies p_{ABE}(a, b, e|x, y)$$

Maximising $q_{\mathcal{L}}$: linear program

 $r \leq I(A: B \downarrow E)$

9

Protocols with Werner states and projective measurements

 $p_{AB}(a,b|x,y) = \operatorname{tr}[(v|\psi_{-}\rangle\langle\psi_{-}| + (1-v)\frac{\mathbb{I}}{4})(A^{x}_{a}\otimes B^{y}_{b})]$

Designolle, Iommazzo, Besançon, Knebel, Gelß, Pokutta, arXiv:2302.04721 (see poster no. 5, Sébastien Designolle)

Convex combination attack

$$\begin{split} \rho^{\mathcal{L}} &= \mathsf{v}_{\mathcal{L}} |\psi_{-}\rangle \langle \psi_{-}| + (1 - \mathsf{v}_{\mathcal{L}}) \frac{\mathbb{I}}{4}, \ \rho^{\mathcal{NL}} = |\psi_{-}\rangle \langle \psi_{-}| \\ & q_{\mathcal{L}} = (1 - \mathsf{v})/(1 - \mathsf{v}_{\mathcal{L}}) \end{split}$$

What if only one party announces their settings?

What if only one party announces their settings? Multiple parties? (see poster no. 22, Jan Nöller)

What if only one party announces their settings? Multiple parties? (see poster no. 22, Jan Nöller) Thank you!