The optimal depth of variational quantum algorithms is QCMA-hard to approximate¹

Lennart Bittel

Sevag Gharibian

Martin Kliesch

¹Institute for Theoretical Physics Heinrich Heine University Düsseldorf Germany ²Department of Computer Science Inst. for Photonic Quantum Systems Paderborn University Germany ³Heinrich Heine University Düsseldorf Hamburg University of Technology Germany

¹arXiv:2211.12519

Sevag Gharibian (Paderborn University)

Hardness of optimizing VQA/QAOA depth

Outline

2 Our results

3 Quantum Classical Merlin-Arthur (QCMA)

Proof sketches

э.

Germany to invest €2B in quantum technologies

11 May 2021 | News

In one of the biggest spending plans of its kind in the world, the government commits to develop country's first quantum computer

By Éanna Kelly

German Science Minister, Anja Karliczek Photo: Anja Karliczek website

Germany is to invest \pounds billion in quantum computing and related technologies over five years, under a plan that dwarfs that of almost every other country, with the education and research ministry committing \pounds 1.1 billion by 2025 for R&D, while the economy ministry will contribute \pounds 878 million to develop applications.

The German Aerospace Centre will get most of the money, some $\varepsilon740$ million, to team up with industry.

Announcing the plan on Tuesday, science minister Anja Karliczek, said the government aims to build a competitive quantum computer in five years, while growing a network of companies to develop applications.

Noisy Intermediate-Scale Quantum (NISQ) computation era

Question: What can we do with near-term quantum devices with

- small number of qubits,
- short circuit depth,
- Iimited connectivity between qubits?

Hardness of optimizing VQA/QAOA depth

不得下 不至下 不至下

э

Variational Quantum Algorithms (VQA)

Idea: Hybrid classical-quantum setup

Function $f(\theta_1, \dots, \theta_n) \in R$ Classical C

Goals

- Wish to minimize some cost function $f : \mathbb{R}^n \to \mathbb{R}$
- Variationally choose parameters $\theta_i \in \mathbb{R}$ (via gradient descent, machine learning, etc)
- Our focus: Keep Q as small as possible (few qubits, low depth, etc)

Hardness of optimizing VQA/QAOA depth

Under the hood

Quantum component ${\cal Q}$

- Given set of Hamiltonians $\{H_k\}$, choose unitaries $U_k(\theta_k) = e^{i\theta_k H_k}$ for k = 1, ..., d
- Roughly, a "fast-forwarded" version of standard Trotterization of Hamiltonian evolution

A D A D A D A

Under the hood

Quantum component ${\cal Q}$

- Given set of Hamiltonians $\{H_k\}$, choose unitaries $U_k(\theta_k) = e^{i\theta_k H_k}$ for k = 1, ..., d
- Roughly, a "fast-forwarded" version of standard Trotterization of Hamiltonian evolution

Goal:

- Minimize "depth" *d*, i.e. number of rotations applied
- Crucial for NISQ devices: Low depth ⇒ circuit completes before noise destroys computation

Quantum Approximate Optimization Algorithm (QAOA)

- Introduced in 2014 by Farhi, Goldstone, Gutmann
- Tries to approximately solve hard combinatorial problems, e.g. MAX CUT

For MAX CUT, alternate application of $H_1 = \sum_{\text{edges } (i,j)} Z_i \otimes Z_j$ and $H_2 = \sum_i X_i$.

Quantum Approximate Optimization Algorithm (QAOA)

- ۲ Introduced in 2014 by Farhi, Goldstone, Gutmann
- ٠ Tries to approximately solve hard combinatorial problems, e.g. MAX CUT

For MAX CUT, alternate application of $H_1 = \sum_{\text{edges } (i,j)} Z_j \otimes Z_j$ and $H_2 = \sum_i X_i$.

Algorithm

- "Pick" variational angles $\theta_1, \ldots, \theta_d$.
- 2 Use Q to prepare state $|\psi\rangle = e^{i\theta_d H_2} e^{i\theta_d H_1} \cdots e^{i\theta_2 H_2} e^{i\theta_1 H_1} |+ \cdots +\rangle$.
- Measure $|\psi\rangle$ in standard basis to get string x, which defines a cut in graph.

Quantum Approximate Optimization Algorithm (QAOA)

- Introduced in 2014 by Farhi, Goldstone, Gutmann
- Tries to approximately solve hard combinatorial problems, e.g. MAX CUT

For MAX CUT, alternate application of $H_1 = \sum_{\text{edges } (i,j)} Z_i \otimes Z_j$ and $H_2 = \sum_i X_i$.

Algorithm

- **1** "Pick" variational angles $\theta_1, \ldots, \theta_d$.
- 2 Use *Q* to prepare state $|\psi\rangle = e^{i\theta_d H_2} e^{i\theta_d H_1} \cdots e^{i\theta_2 H_2} e^{i\theta_1 H_1} |+\cdots+\rangle$.
- 3 Measure $|\psi\rangle$ in standard basis to get string x, which defines a cut in graph.

Question: What is the "right" depth d to use?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Early good news:

• Level-1 QAOA achieves 0.6924-approximation for MAX CUT [Farhi, Goldstone, Gutmann 2014]

э.

Early good news:

- Level-1 QAOA achieves 0.6924-approximation for MAX CUT [Farhi, Goldstone, Gutmann 2014]
- Level-1 QAOA's output distribution cannot be efficiently simulated classically [Farhi, Harrow 2016]

-

Early good news:

- Level-1 QAOA achieves 0.6924-approximation for MAX CUT [Farhi, Goldstone, Gutmann 2014]
- Level-1 QAOA's output distribution cannot be efficiently simulated classically [Farhi, Harrow 2016]
- QAOA with poly depth is universal [Lloyd 2018]

Early good news:

- Level-1 QAOA achieves 0.6924-approximation for MAX CUT [Farhi, Goldstone, Gutmann 2014]
- Level-1 QAOA's output distribution cannot be efficiently simulated classically [Farhi, Harrow 2016]
- QAOA with poly depth is universal [Lloyd 2018]

Later, less good news:

• O(1)-level QAOA cannot outperform Goemans-Williamson algorithm for MAX CUT [Bravyi, A. Kliesch, Koenig, Tang 2020]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Early good news:

- Level-1 QAOA achieves 0.6924-approximation for MAX CUT [Farhi, Goldstone, Gutmann 2014]
- Level-1 QAOA's output distribution cannot be efficiently simulated classically [Farhi, Harrow 2016]
- QAOA with poly depth is universal [Lloyd 2018]

Later, less good news:

- O(1)-level QAOA cannot outperform Goemans-Williamson algorithm for MAX CUT [Bravyi, A. Kliesch, Koenig, Tang 2020]
- Many (many) heuristic studies suggest hard to optimize parameters (e.g. barren plateaus)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Early good news:

- Level-1 QAOA achieves 0.6924-approximation for MAX CUT [Farhi, Goldstone, Gutmann 2014]
- Level-1 QAOA's output distribution cannot be efficiently simulated classically [Farhi, Harrow 2016]
- QAOA with poly depth is universal [Lloyd 2018]

Later, less good news:

- O(1)-level QAOA cannot outperform Goemans-Williamson algorithm for MAX CUT [Bravyi, A. Kliesch, Koenig, Tang 2020]
- Many (many) heuristic studies suggest hard to optimize parameters (e.g. barren plateaus)
- NP-hard to optimize angles θ_k if Hamiltonian sequence (H₁,..., H_d) and depth d prespecified [Bittel, M. Kliesch, 2021]

Early good news:

- Level-1 QAOA achieves 0.6924-approximation for MAX CUT [Farhi, Goldstone, Gutmann 2014]
- Level-1 QAOA's output distribution cannot be efficiently simulated classically [Farhi, Harrow 2016]
- QAOA with poly depth is universal [Lloyd 2018]

Later, less good news:

- O(1)-level QAOA cannot outperform Goemans-Williamson algorithm for MAX CUT [Bravyi, A. Kliesch, Koenig, Tang 2020]
- Many (many) heuristic studies suggest hard to optimize parameters (e.g. barren plateaus)
- NP-hard to optimize angles θ_k if Hamiltonian sequence (H₁,..., H_d) and depth d prespecified [Bittel, M. Kliesch, 2021]

This work: How hard to estimate the optimal depth, d, for VQA/QAOA?

Definition of VQA minimization used by [Bittel, M. Kliesch, 2021]

Recall:

NP-hard to optimize angles θ_k if Hamiltonian sequence (H₁,..., H_d) and depth d prespecified [Bittel, M. Kliesch, 2021]

VQA minimization (MIN-VQA) [Bittel, M. Kliesch, 2021]

- Input: Sequence (H_1, \ldots, H_L) of local Hamiltonians, observable M
- Output: Angles $(\theta_1, \ldots, \theta_L)$ such that $|\psi\rangle := e^{i\theta_L G_L} \cdots e^{i\theta_1 G_1} |0 \cdots 0\rangle$ minimizes $\langle \psi | \mathbf{M} | \psi \rangle$.

Definition of VQA minimization used by [Bittel, M. Kliesch, 2021]

Recall:

NP-hard to optimize angles θ_k if Hamiltonian sequence (H₁,..., H_d) and depth d prespecified [Bittel, M. Kliesch, 2021]

VQA minimization (MIN-VQA) [Bittel, M. Kliesch, 2021]

- Input: Sequence (H_1, \ldots, H_L) of local Hamiltonians, observable M
- Output: Angles $(\theta_1, \ldots, \theta_L)$ such that $|\psi\rangle := e^{i\theta_L G_L} \cdots e^{i\theta_1 G_1} |0 \cdots 0\rangle$ minimizes $\langle \psi | \mathbf{M} | \psi \rangle$.

In words:

- Rotation axes (i.e. Hamiltonians) and their order of application fixed
- Implicitly, this also fixes the depth *L* of the ansatz
- Question: What if we relax these restrictions, and focus purely on depth minimization?

Outline

Our results

3 Quantum Classical Merlin-Arthur (QCMA)

Proof sketches

Sevag Gharibian (Paderborn University)

Hardness of optimizing VQA/QAOA depth

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶</p>
CEQIP 2023

୬ < ୯ 10/29

э.

Formalizing depth minimization

VQA minimization (MIN-VQA)

- Input: Set H of local Hamiltonians, observable M, depth thresholds $d_1 \leq d_2$
- Output:

YES: if \exists at most d_1 angles $(\theta_1, \ldots, \theta_{d_1}) \in \mathbb{R}^{d_1}$ and Hamiltonians $(G_1, \ldots, G_{d_1}) \in H^{\times d_1}$ s.t.

 $|\psi\rangle := e^{i heta_1 \, G_{\mathbf{d}_1}} \cdots e^{i heta_1 \, G_1} |0\cdots 0
angle$ satisfies $\langle \psi | \pmb{M} | \psi
angle \leq 1/3$.

NO: if \forall sequences of at most d_2 angles $(\theta_1, \ldots, \theta_{d_2}) \in \mathbb{R}^{d_2}$ and $(G_1, \ldots, G_{d_2}) \in H^{\times d_2}$,

 $|\psi\rangle := e^{i\theta_{d_2}G_{d_2}}\cdots e^{i\theta_1G_1}|0\cdots 0\rangle$ satisfies $\langle \psi|M|\psi\rangle \ge 2/3.$

Notes:

- Closer to definition of ADAPT-VQE [Grimsley, Economou, Barnes, Mayhall 2019]
- Containment in QCMA straightforward: prover sends (θ_i) and (G_i) , verifier runs Hamiltonian simulation.

Our result for MIN-VQA

Theorem 1

For any $\epsilon > 0$, it is QCMA-hard to distinguish between the YES and NO cases of MIN-VQA, even if

$$rac{d_2}{d_1} \ge N^{1-\epsilon},$$

for *N* the encoding size of the instance.

In words:

- Approximating optimal depth of VQA, even up to large multiplicative factors, is intractable
- First natural QCMA-hard to approximate problem
- (Aside: NP \subseteq MA \subseteq QCMA \subseteq QMA.)

э.

As for QAOA

QAOA minimization (MIN-QAOA)

Input:

- Set $H = \{H_b, H_c\}$ of local Hamiltonians
- Quantum circuit preparing ground state $|gs_b\rangle$ of H_b
- Depth thresholds $d_1 \leq d_2$
- Output:

YES: if
$$\exists$$
 at most d_1 angles $(\theta_1, \ldots, \theta_{d_1}) \in \mathbb{R}^{d_1}$ s.t.

$$|\psi\rangle := e^{i\theta_{(d_1)}H_b}e^{i\theta_{(d_1-1)}H_c}\cdots e^{i\theta_2H_b}e^{i\theta_1H_c}|\mathbf{gs}_b\rangle \qquad \text{satisfies } \langle \psi|M|\psi\rangle \leq 1/3.$$

NO: if \forall sequences of at most d_2 angles $(\theta_1, \ldots, \theta_{d_2}) \in \mathbb{R}^{d_2}$,

 $|\psi\rangle := e^{i\theta_{(d_1)}H_b}e^{i\theta_{(d_1-1)}H_c}\cdots e^{i\theta_2H_b}e^{i\theta_1H_c}|gs_b\rangle$ satisfies $\langle \psi|M|\psi\rangle \ge 2/3$.

= 990

Our result for MIN-QAOA

Theorem 2

For any $\epsilon > 0$, it is QCMA-hard to distinguish between the YES and NO cases of MIN-QAOA, even if

$$rac{d_2}{d_1} \ge N^{1-\epsilon},$$

for *N* the encoding size of the instance.

э.

Our result for MIN-QAOA

Theorem 2

For any $\epsilon > 0$, it is QCMA-hard to distinguish between the YES and NO cases of MIN-QAOA, even if

$$rac{d_2}{d_1} \ge N^{1-\epsilon},$$

for *N* the encoding size of the instance.

Disclaimers:

- Assume "perfect", idealized quantum computer (i.e. no noise, perfect gates, platform-independent, etc)
- Complexity results are worst-case, i.e. in practice special instances of problems might be easier to solve

= nan

Outline

Variational Quantum Algorithms (VQAs)

2 Our results

3 Quantum Classical Merlin-Arthur (QCMA)

Proof sketches

э.

The de facto "quantum NP"

Quantum Merlin-Arthur (QMA)

Promise problem $\mathbb{A} = (A_{yes}, A_{no}) \in \mathsf{QMA}$ if \exists poly-time uniformly generated quantum circuit family $\{Q_n\}$ s.t.:

- (YES case) If $x \in A_{\text{yes}}$, $\exists \text{ proof } |\psi_{\text{proof}}\rangle \in (\mathbb{C}^2)^{\otimes \text{poly}(n)}$, such that Q_n accepts with probability at least 2/3.
- (NO case) If $x \in A_{no}$, then \forall proofs $|\psi_{proof}\rangle \in (\mathbb{C}^2)^{\otimes poly(n)}$, Q_n accepts with probability at most 1/3.

Wait... there's more than one definition "quantum NP"?

← □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
 </p>

 CEQIP 2023

э

Wait... there's more than one definition "quantum NP"?

Sevag Gharibian (Paderborn University)

Hardness of optimizing VQA/QAOA depth

୬୯୯ 17/29

э

Wait... there's more than one definition of "quantum NP"?

Named after Snow White's dwarves:

- (Doc) QMA
- (Bashful) QMA1: QMA with perfect completeness
- (Happy) QCMA: QMA with classical proof
- (Grumpy) QMA(2): QMA with "unentangled" proof of form $|\psi_1\rangle \otimes |\psi_2\rangle$
- Since zy) NQP: Quantum TM accepts $x \in A_{yes}$ in poly-time with probability > 0. (Equals $coC_{=}P$ [Fenner, Green, Homer, Pruim, 1998].)
- **(Dopey)** StoqMA: QMA with $\{|0\rangle, |+\rangle\}$ ancillae, classical gates, measurement in X basis

Quantum-Classical Merlin-Arthur (QCMA)

Promise problem $\mathbb{A} = (A_{\text{ves}}, A_{\text{no}}) \in \text{QCMA}$ if \exists poly-time uniformly generated quantum circuit family $\{Q_n\}$ s.t.:

- (YES case) If $x \in A_{ves}$, \exists proof $y \in \{0, 1\}^{poly(n)}$, such that Q_n accepts with probability at least 2/3.
- (NO case) If $x \in A_{n_0}$, then \forall proofs $y \in \{0, 1\}^{\text{poly}(n)}$, Q_n accepts with probability at most 1/3.

Question: What good is a classical proof to a quantum verifier?

Recall

Quantum component Q

- Given set of Hamiltonians $\{H_k\}$, choose unitaries $U_k(\theta_k) = e^{i\theta_k H_k}$ for k = 1, ..., d
- Roughly, a "fast-forwarded" version of standard Trotterization of Hamiltonian evolution

Goal:

- Minimize "depth" *d*, i.e. number of rotations applied
- Crucial for NISQ devices: Low depth ⇒ circuit completes before noise destroys computation

Outline

Variational Quantum Algorithms (VQAs)

3 Quantum Classical Merlin-Arthur (QCMA)

イロト 不良 トイヨト イヨト

э.

Goal: Map given QCMA circuit V to instance (H, d, d') of MIN-VQA s.t. $\frac{d'}{d} \ge N^{1-\epsilon}$, and

 \exists proof y accepted by V $\implies \leq d$ VQA levels suffice to get "good" measurement result

 \forall proofs y, V rejects \implies > d' VQA levels required to get "good" measurement result

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Goal: Map given QCMA circuit V to instance (H, d, d') of MIN-VQA s.t. $\frac{d'}{d} \ge N^{1-\epsilon}$, and

- \exists proof y accepted by V \implies \leq d VQA levels suffice to get "good" measurement result
 - \forall proofs y, V rejects \implies > d' VQA levels required to get "good" measurement result

Challenges:

Where will hardness of approximation (i.e. large ratio d'/d) come from?

= nan

Goal: Map given QCMA circuit V to instance (H, d, d') of MIN-VQA s.t. $\frac{d'}{d} \ge N^{1-\epsilon}$, and

- \exists proof y accepted by V \implies \leq d VQA levels suffice to get "good" measurement result
 - \forall proofs y, V rejects \implies > d' VQA levels required to get "good" measurement result

Challenges:

- **1** Where will hardness of approximation (i.e. large ratio d'/d) come from?
- MIN-VQA does not restrict which Hamiltonians are applied, in which order, with which rotation angles. How to enforce computational structure?

= nan

Goal: Map given QCMA circuit V to instance (H, d, d') of MIN-VQA s.t. $\frac{d'}{d} \ge N^{1-\epsilon}$, and

- \exists proof y accepted by V \implies \leq d VQA levels suffice to get "good" measurement result
 - \forall proofs y, V rejects \implies > d' VQA levels required to get "good" measurement result

Challenges:

- **)** Where will hardness of approximation (i.e. large ratio d'/d) come from?
- MIN-VQA does not restrict which Hamiltonians are applied, in which order, with which rotation angles. How to enforce computational structure?
- MIN-QAOA even more restricted than MIN-VQA permits only two Hamiltonians, one of which also acts as observable?

Challenge 1: Hardness of approximation

Quantum Monotone Minimum Satisfying Assignment (QMSA)

Given quantum circuit V accepting non-empty monotone set $S \subseteq \{0, 1\}^n$, weight thresholds $g \leq g'$, output:

- YES if $\exists x \in \{0,1\}^n$ of Hamming weight at most *g* accepted by *V*.
- NO if $\forall x \in \{0,1\}^n$ of Hamming weight at most g' are rejected by V.

Previously known:

- $\forall \epsilon > 0$, QMSA is QCMA-hard to approximate within ratio $g'/g \in O(N^{1-\epsilon})$ [G, Kempe, 2012]
- Exploits disperser-based NP-hardness of approximation framework of [Umans 1999] for Σ^ρ₂

Challenge 1: Hardness of approximation

Quantum Monotone Minimum Satisfying Assignment (QMSA)

Given quantum circuit V accepting non-empty monotone set $S \subseteq \{0, 1\}^n$, weight thresholds $g \leq g'$, output:

- YES if $\exists x \in \{0, 1\}^n$ of Hamming weight at most *g* accepted by *V*.
- NO if $\forall x \in \{0, 1\}^n$ of Hamming weight at most g' are rejected by V.

Previously known:

- $\forall \epsilon > 0$, QMSA is QCMA-hard to approximate within ratio $g'/g \in O(N^{1-\epsilon})$ [G, Kempe, 2012]
- Exploits disperser-based NP-hardness of approximation framework of [Umans 1999] for Σ^ρ₂

To overcome Challenge 1:

- Reduce QMSA to MIN-VQA via poly-time, many-one reduction
- Maintaining $N^{1-\epsilon}$ hardness ratio will require special attention

Revised Goal: Map given QMSA instance (V, g, g') to instance (H, d, d') of MIN-VQA s.t. $\frac{d'}{d} \ge N^{1-\epsilon}$, and

 \exists proof y of Hamming weight $\leq g$ accepted by V $\implies \leq d$ VQA levels to get "good" measurement result

 \forall proofs y of Hamming weight $\leq g'$, V rejects $\implies > d'$ VQA levels to get "good" measurement result

Revised Goal: Map given QMSA instance (V, g, g') to instance (H, d, d') of MIN-VQA s.t. $\frac{d'}{d} \ge N^{1-\epsilon}$, and

 \exists proof y of Hamming weight $\leq g$ accepted by V $\implies \leq d$ VQA levels to get "good" measurement result \forall proofs y of Hamming weight $\leq q'$. V rejects $\implies > d'$ VQA levels to get "good" measurement result

Idea

Use "hybrid Cook-Levin + Kitaev" circuit-to-Hamiltonian construction

Revised Goal: Map given QMSA instance (V, g, g') to instance (H, d, d') of MIN-VQA s.t. $\frac{d'}{d} \ge N^{1-\epsilon}$, and

 $\exists \text{ proof } y \text{ of Hamming weight} \leq g \text{ accepted by } V \implies \leq d \text{ VQA levels to get "good" measurement result} \\ \forall \text{ proofs } y \text{ of Hamming weight} \leq g', V \text{ rejects} \implies > d' \text{ VQA levels to get "good" measurement result} \end{cases}$

Idea

- Use "hybrid Cook-Levin + Kitaev" circuit-to-Hamiltonian construction
- Build set of VQA Hamiltonians $H = P \cup Q \cup F \cup G$, such that for an honest prover:
 - (Proof) Hamiltonians from P used to prepare proof y

Revised Goal: Map given QMSA instance (V, g, g') to instance (H, d, d') of MIN-VQA s.t. $\frac{d'}{d} \ge N^{1-\epsilon}$, and

 $\exists \text{ proof } y \text{ of Hamming weight} \leq g \text{ accepted by } V \implies \leq d \text{ VQA levels to get "good" measurement result} \\ \forall \text{ proofs } y \text{ of Hamming weight} \leq g', V \text{ rejects} \implies > d' \text{ VQA levels to get "good" measurement result} \end{cases}$

Idea

- Use "hybrid Cook-Levin + Kitaev" circuit-to-Hamiltonian construction
- Build set of VQA Hamiltonians $H = P \cup Q \cup F \cup G$, such that for an honest prover:
 - (Proof) Hamiltonians from P used to prepare proof y
 - Quantum verifier V) Hamiltonians from Q used to simulate QMSA verifier V's gates

= nan

Revised Goal: Map given QMSA instance (V, g, g') to instance (H, d, d') of MIN-VQA s.t. $\frac{d'}{d} \ge N^{1-\epsilon}$, and

 $\exists \text{ proof } y \text{ of Hamming weight} \leq g \text{ accepted by } V \implies \leq d \text{ VQA levels to get "good" measurement result} \\ \forall \text{ proofs } y \text{ of Hamming weight} \leq g', V \text{ rejects} \implies > d' \text{ VQA levels to get "good" measurement result} \end{cases}$

Idea

- Use "hybrid Cook-Levin + Kitaev" circuit-to-Hamiltonian construction
- Build set of VQA Hamiltonians $H = P \cup Q \cup F \cup G$, such that for an honest prover:
 - (Proof) Hamiltonians from P used to prepare proof y
 - (Quantum verifier V) Hamiltonians from Q used to simulate QMSA verifier V's gates
 - 3 (2D clock) Hamiltonians from F ∪ G implement "2D clock" to track time and preserve hardness gap d'/d

VQA Hamiltonians act on four registers: A (proof), B (workspace), C (clock 1) and D (clock 2)

VQA Hamiltonians act on four registers: A (proof), B (workspace), C (clock 1) and D (clock 2)

• Set of "proof" Hamiltonians, P, consists of (e.g.)

 $X_{A_j} \otimes |1\rangle\langle 1|_{C_j} \otimes |1\rangle\langle 1|_{D|_{D|}} \xrightarrow{\text{evolve for } \theta = \pi/2}$ apply X to *j*th proof qubit if clocks C and D are *j* and |D|, resp.

э.

VQA Hamiltonians act on four registers: A (proof), B (workspace), C (clock 1) and D (clock 2)

• Set of "proof" Hamiltonians, P, consists of (e.g.)

 $X_{A_j} \otimes |1\rangle\langle 1|_{C_j} \otimes |1\rangle\langle 1|_{D_{|D|}} \xrightarrow{\text{evolve for } \theta = \pi/2} \text{ apply } X \text{ to } j \text{th proof qubit if clocks } C \text{ and } D \text{ are } j \text{ and } |D|, \text{ resp.}$

• Set of "quantum verifier" Hamiltonians, Q, consists of (e.g.)

 $(V_j)_{AB} \otimes |01\rangle \langle 10|_{\mathcal{C}_{|A|+j,|A|+j+1}} + (V_j^{\dagger})_{AB} \otimes |10\rangle \langle 01|_{\mathcal{C}_{|A|+j,|A|+j+1}} \qquad \xrightarrow{\text{evolve for } \theta = \pi/2}$

apply *j*th gate of verifier *V*, update clock *C* from |A| + j to |A| + j + 1

VQA Hamiltonians act on four registers: A (proof), B (workspace), C (clock 1) and D (clock 2)

• Set of "proof" Hamiltonians, P, consists of (e.g.)

 $X_{A_j} \otimes |1\rangle\langle 1|_{C_j} \otimes |1\rangle\langle 1|_{D_{|D|}} \xrightarrow{\text{evolve for } \theta = \pi/2} \text{ apply } X \text{ to } j \text{th proof qubit if clocks } C \text{ and } D \text{ are } j \text{ and } |D|, \text{ resp.}$

• Set of "quantum verifier" Hamiltonians, Q, consists of (e.g.)

 $(V_j)_{AB} \otimes |01\rangle \langle 10|_{\mathcal{C}_{|A|+j,|A|+j+1}} + (V_j^{\dagger})_{AB} \otimes |10\rangle \langle 01|_{\mathcal{C}_{|A|+j,|A|+j+1}} \qquad \xrightarrow{\text{evolve for } \theta = \pi/2}$

apply *j*th gate of verifier *V*, update clock *C* from |A| + j to |A| + j + 1

• Observable *M* measures output qubit of *V* when clock *C* set to |C|

Hardness of optimizing VQA/QAOA depth

Honest provers actions, given instance (V, g, g') of QMSA

- Prepare proof y by flipping each appropriate bit of register A
 - Takes HammingWeight(y) many Hamiltonian evolutions from set P
- 2 Simulate each gate of verifier $V = V_L \cdots V_1$
 - Takes L many Hamiltonian evolutions from set Q
- Observable M now applies energy penalty if V would reject y

Honest provers actions, given instance (V, g, g') of QMSA

- Prepare proof v by flipping each appropriate bit of register A
 - Takes HammingWeight(y) many Hamiltonian evolutions from set P
- 2 Simulate each gate of verifier $V = V_1 \cdots V_1$
 - Takes L many Hamiltonian evolutions from set Q
- 3 Observable *M* now applies energy penalty if *V* would reject *y*

Bad news: Honest prover above applies HammingWeight(γ)+L evolutions, so ratio obtained scales as

$$rac{g'+L}{g+L} o$$
 1 if $L \in \omega(g).$

Honest provers actions, given instance (V, g, g') of QMSA

- Prepare proof y by flipping each appropriate bit of register A
 - Takes HammingWeight(y) many Hamiltonian evolutions from set P
- 2 Simulate each gate of verifier $V = V_L \cdots V_1$
 - Takes L many Hamiltonian evolutions from set Q
- Observable M now applies energy penalty if V would reject y

Bad news: Honest prover above applies HammingWeight(y)+L evolutions, so ratio obtained scales as

$$rac{g'+L}{g+L} o$$
 1 if $L \in \omega(g).$

Fix: Use 2D clock to make flipping each bit of proof "more costly" without blowing up encoding size:

New hardness ratio:
$$\frac{g'|D|+L}{g|D|+L} \approx \frac{g'}{g}$$
 for $|D| \in \omega(L)$, (1)

Hardness of optimizing VQA/QAOA depth

Soundness for dishonest prover

Computation Subspace Preservation Lemma

For any sequence of angles $\theta_j \in \mathbb{R}$ and Hamiltonians $H_j \in P \cup Q \cup F \cup G$,

$$e^{i heta_m H_m} \cdots e^{i heta_2 H_2} e^{i heta_1 H_1} | 0 \cdots 0
angle_{ extsf{ABCD}}$$

is in span of states from

$$S := \left\{ V_{s-|A|} \cdots V_1 | y \rangle_A | 0 \cdots 0 \rangle_B | \widetilde{s} \rangle_C | \widetilde{t} \rangle_D \mid y \in \{0,1\}^{|A|}, s \in \{1,\ldots,|C|\}, t \in \{1,\ldots,|D|\} \right\}.$$
(2)

In words:

- Any sequence of Hamiltonian evolutions keeps us in "logical computation space" S.
- Implication: Forces prover to essentially follow honest strategy

э.

27/29

Challenge 3: Extending to QAOA

For QAOA:

- Only 2 Hamiltonians allowed, *H*_b (driving Hamiltonian) and *H*_c (cost Hamiltonian),
- start state implicitly given as unique ground state of H_b
- no separate observable *M*.

э.

Challenge 3: Extending to QAOA

For QAOA:

- Only 2 Hamiltonians allowed, *H_b* (driving Hamiltonian) and *H_c* (cost Hamiltonian),
- start state implicitly given as unique ground state of H_b
- no separate observable *M*.

Core idea: Alternate even/odd steps of honest prover's actions, i.e. H_b does even steps, H_c odd steps.

人口 医脊髓下的 医下颌 医下颌

Challenge 3: Extending to QAOA

For QAOA:

- Only 2 Hamiltonians allowed, H_b (driving Hamiltonian) and H_c (cost Hamiltonian),
- start state implicitly given as unique ground state of H_b
- no separate observable *M*.

Core idea: Alternate even/odd steps of honest prover's actions, i.e. H_b does even steps, H_c odd steps.

Under the hood, build on MIN-VQA construction as follows:

- Make all odd (respectively, even) local terms H_i pairwise commute.
- Introduce 3-cyclic local terms G_i which encode multiple logical actions (instead of just 2)
- 3 Add constraints to H_b to ensure its unique ground state is correct start state.
- **4** M added as local term to H_c , but scaled larger than all other terms in H_c .

Summary

- Estimating the optimal depth of a VQA/QAOA ansatz is intractable, even with large multiplicative error
- Formally, QCMA-hard within multiplicative error $N^{1-\epsilon}$ for any $\epsilon > 0$.
- First natural hardness of approximation results for QCMA

Summary

- Estimating the optimal depth of a VQA/QAOA ansatz is intractable, even with large multiplicative error
- Formally, QCMA-hard within multiplicative error $N^{1-\epsilon}$ for any $\epsilon > 0$.
- First natural hardness of approximation results for QCMA

Open questions

- NP-hardness of approximation for QAOA depth for classical cost Hamiltonian?
- Good *heuristics* for approximating depth in practice?
- How hard is optimal depth approximation in *noisy* setting?
- Hardness of approximation for other QCMA-complete problems?

= nar

Summary

- Estimating the optimal depth of a VQA/QAOA ansatz is intractable, even with large multiplicative error
- Formally, QCMA-hard within multiplicative error $N^{1-\epsilon}$ for any $\epsilon > 0$.
- First natural hardness of approximation results for QCMA

Open questions

- NP-hardness of approximation for QAOA depth for classical cost Hamiltonian?
- Good *heuristics* for approximating depth in practice?
- How hard is optimal depth approximation in *noisy* setting?
- Hardness of approximation for other QCMA-complete problems?

"Moral" questions

- Obtained hardness of approximation without quantum PCP. In "classical SAT" language:
 - Leveraged hardness of approximation relative to Hamming weight of satisfying assignments
 - ▶ In contrast, "classic PCP for SAT" gives hardness of approximation relative to # clauses satisfied
- Quantum complexity theory hero or villain?