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Noisy Intermediate-Scale Quantum (NISQ) computation era

Question: What can we do with near-term quantum devices with

small number of qubits,

short circuit depth,

limited connectivity between qubits?
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Variational Quantum Algorithms (VQA)
Idea: Hybrid classical-quantum setup

Classical Quantum

Parameters θ1, . . . , θn ∈ R

Function f(θ1, . . . , θn) ∈ R

C Q

Goals
Wish to minimize some cost function f : Rn → R

Variationally choose parameters θi ∈ R (via gradient descent, machine learning, etc)

Our focus: Keep Q as small as possible (few qubits, low depth, etc)
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Under the hood

U1(θ1) U2(θ2) Ud(θd)

|0⟩
|0⟩
|0⟩
|0⟩

|ψ(θ1, . . . , θd)⟩

Quantum component Q

θ1 θ2 θd

Given set of Hamiltonians {Hk}, choose unitaries Uk (θk ) = eiθk Hk for k = 1, . . . , d

Roughly, a “fast-forwarded” version of standard Trotterization of Hamiltonian evolution

Goal:

Minimize “depth” d , i.e. number of rotations applied

Crucial for NISQ devices: Low depth ⇒ circuit completes before noise destroys computation
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Quantum Approximate Optimization Algorithm (QAOA)
Introduced in 2014 by Farhi, Goldstone, Gutmann

Tries to approximately solve hard combinatorial problems, e.g. MAX CUT

cut

For MAX CUT, alternate application of H1 =
∑

edges (i,j) Zi ⊗ Zj and H2 =
∑

i Xi .

Algorithm
1 “Pick” variational angles θ1, . . . , θd .
2 Use Q to prepare state |ψ⟩ = eiθd H2 eiθd H1 · · · eiθ2H2 eiθ1H1 |+ · · ·+⟩.
3 Measure |ψ⟩ in standard basis to get string x , which defines a cut in graph.

Question: What is the “right” depth d to use?
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(Selected) previous work

Early good news:

Level-1 QAOA achieves 0.6924-approximation for MAX CUT [Farhi, Goldstone, Gutmann 2014]

Level-1 QAOA’s output distribution cannot be efficiently simulated classically [Farhi, Harrow 2016]

QAOA with poly depth is universal [Lloyd 2018]

Later, less good news:

O(1)-level QAOA cannot outperform Goemans-Williamson algorithm for MAX CUT [Bravyi, A. Kliesch,
Koenig, Tang 2020]

Many (many) heuristic studies suggest hard to optimize parameters (e.g. barren plateaus)

NP-hard to optimize angles θk if Hamiltonian sequence (H1, . . . ,Hd ) and depth d prespecified [Bittel, M.
Kliesch, 2021]

This work: How hard to estimate the optimal depth, d , for VQA/QAOA?

Sevag Gharibian (Paderborn University) Hardness of optimizing VQA/QAOA depth CEQIP 2023 8 / 29



(Selected) previous work

Early good news:

Level-1 QAOA achieves 0.6924-approximation for MAX CUT [Farhi, Goldstone, Gutmann 2014]

Level-1 QAOA’s output distribution cannot be efficiently simulated classically [Farhi, Harrow 2016]

QAOA with poly depth is universal [Lloyd 2018]

Later, less good news:

O(1)-level QAOA cannot outperform Goemans-Williamson algorithm for MAX CUT [Bravyi, A. Kliesch,
Koenig, Tang 2020]

Many (many) heuristic studies suggest hard to optimize parameters (e.g. barren plateaus)

NP-hard to optimize angles θk if Hamiltonian sequence (H1, . . . ,Hd ) and depth d prespecified [Bittel, M.
Kliesch, 2021]

This work: How hard to estimate the optimal depth, d , for VQA/QAOA?

Sevag Gharibian (Paderborn University) Hardness of optimizing VQA/QAOA depth CEQIP 2023 8 / 29



(Selected) previous work

Early good news:

Level-1 QAOA achieves 0.6924-approximation for MAX CUT [Farhi, Goldstone, Gutmann 2014]

Level-1 QAOA’s output distribution cannot be efficiently simulated classically [Farhi, Harrow 2016]

QAOA with poly depth is universal [Lloyd 2018]

Later, less good news:

O(1)-level QAOA cannot outperform Goemans-Williamson algorithm for MAX CUT [Bravyi, A. Kliesch,
Koenig, Tang 2020]

Many (many) heuristic studies suggest hard to optimize parameters (e.g. barren plateaus)

NP-hard to optimize angles θk if Hamiltonian sequence (H1, . . . ,Hd ) and depth d prespecified [Bittel, M.
Kliesch, 2021]

This work: How hard to estimate the optimal depth, d , for VQA/QAOA?

Sevag Gharibian (Paderborn University) Hardness of optimizing VQA/QAOA depth CEQIP 2023 8 / 29



(Selected) previous work

Early good news:

Level-1 QAOA achieves 0.6924-approximation for MAX CUT [Farhi, Goldstone, Gutmann 2014]

Level-1 QAOA’s output distribution cannot be efficiently simulated classically [Farhi, Harrow 2016]

QAOA with poly depth is universal [Lloyd 2018]

Later, less good news:

O(1)-level QAOA cannot outperform Goemans-Williamson algorithm for MAX CUT [Bravyi, A. Kliesch,
Koenig, Tang 2020]

Many (many) heuristic studies suggest hard to optimize parameters (e.g. barren plateaus)

NP-hard to optimize angles θk if Hamiltonian sequence (H1, . . . ,Hd ) and depth d prespecified [Bittel, M.
Kliesch, 2021]

This work: How hard to estimate the optimal depth, d , for VQA/QAOA?

Sevag Gharibian (Paderborn University) Hardness of optimizing VQA/QAOA depth CEQIP 2023 8 / 29



(Selected) previous work

Early good news:

Level-1 QAOA achieves 0.6924-approximation for MAX CUT [Farhi, Goldstone, Gutmann 2014]

Level-1 QAOA’s output distribution cannot be efficiently simulated classically [Farhi, Harrow 2016]

QAOA with poly depth is universal [Lloyd 2018]

Later, less good news:

O(1)-level QAOA cannot outperform Goemans-Williamson algorithm for MAX CUT [Bravyi, A. Kliesch,
Koenig, Tang 2020]

Many (many) heuristic studies suggest hard to optimize parameters (e.g. barren plateaus)

NP-hard to optimize angles θk if Hamiltonian sequence (H1, . . . ,Hd ) and depth d prespecified [Bittel, M.
Kliesch, 2021]

This work: How hard to estimate the optimal depth, d , for VQA/QAOA?

Sevag Gharibian (Paderborn University) Hardness of optimizing VQA/QAOA depth CEQIP 2023 8 / 29



(Selected) previous work

Early good news:

Level-1 QAOA achieves 0.6924-approximation for MAX CUT [Farhi, Goldstone, Gutmann 2014]

Level-1 QAOA’s output distribution cannot be efficiently simulated classically [Farhi, Harrow 2016]

QAOA with poly depth is universal [Lloyd 2018]

Later, less good news:

O(1)-level QAOA cannot outperform Goemans-Williamson algorithm for MAX CUT [Bravyi, A. Kliesch,
Koenig, Tang 2020]

Many (many) heuristic studies suggest hard to optimize parameters (e.g. barren plateaus)

NP-hard to optimize angles θk if Hamiltonian sequence (H1, . . . ,Hd ) and depth d prespecified [Bittel, M.
Kliesch, 2021]

This work: How hard to estimate the optimal depth, d , for VQA/QAOA?

Sevag Gharibian (Paderborn University) Hardness of optimizing VQA/QAOA depth CEQIP 2023 8 / 29



(Selected) previous work

Early good news:

Level-1 QAOA achieves 0.6924-approximation for MAX CUT [Farhi, Goldstone, Gutmann 2014]

Level-1 QAOA’s output distribution cannot be efficiently simulated classically [Farhi, Harrow 2016]

QAOA with poly depth is universal [Lloyd 2018]

Later, less good news:

O(1)-level QAOA cannot outperform Goemans-Williamson algorithm for MAX CUT [Bravyi, A. Kliesch,
Koenig, Tang 2020]

Many (many) heuristic studies suggest hard to optimize parameters (e.g. barren plateaus)

NP-hard to optimize angles θk if Hamiltonian sequence (H1, . . . ,Hd ) and depth d prespecified [Bittel, M.
Kliesch, 2021]

This work: How hard to estimate the optimal depth, d , for VQA/QAOA?

Sevag Gharibian (Paderborn University) Hardness of optimizing VQA/QAOA depth CEQIP 2023 8 / 29



Definition of VQA minimization used by [Bittel, M. Kliesch, 2021]

Recall:
NP-hard to optimize angles θk if Hamiltonian sequence (H1, . . . ,Hd ) and depth d prespecified [Bittel, M.
Kliesch, 2021]

VQA minimization (MIN-VQA) [Bittel, M. Kliesch, 2021]
Input: Sequence (H1, . . . ,HL) of local Hamiltonians, observable M

Output: Angles (θ1, . . . , θL) such that |ψ⟩ := eiθLGL · · · eiθ1G1 |0 · · · 0⟩ minimizes ⟨ψ|M|ψ⟩.

In words:
Rotation axes (i.e. Hamiltonians) and their order of application fixed

Implicitly, this also fixes the depth L of the ansatz

Question: What if we relax these restrictions, and focus purely on depth minimization?
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Formalizing depth minimization

VQA minimization (MIN-VQA)
Input: Set H of local Hamiltonians, observable M, depth thresholds d1 ≤ d2

Output:

YES: if ∃ at most d1 angles (θ1, . . . , θd1) ∈ R
d1 and Hamiltonians (G1, . . . ,Gd1) ∈ H×d1 s.t.

|ψ⟩ := eiθd1
Gd1 · · · eiθ1G1 |0 · · · 0⟩ satisfies ⟨ψ|M|ψ⟩ ≤ 1/3.

NO: if ∀ sequences of at most d2 angles (θ1, . . . , θd2) ∈ R
d2 and (G1, . . . ,Gd2) ∈ H×d2 ,

|ψ⟩ := eiθd2
Gd2 · · · eiθ1G1 |0 · · · 0⟩ satisfies ⟨ψ|M|ψ⟩ ≥ 2/3.

Notes:

Closer to definition of ADAPT-VQE [Grimsley, Economou, Barnes, Mayhall 2019]

Containment in QCMA straightforward: prover sends (θi) and (Gi), verifier runs Hamiltonian simulation.
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Our result for MIN-VQA

Theorem 1
For any ϵ > 0, it is QCMA-hard to distinguish between the YES and NO cases of MIN-VQA, even if

d2

d1
≥ N1−ϵ,

for N the encoding size of the instance.

In words:

Approximating optimal depth of VQA, even up to large multiplicative factors, is intractable

First natural QCMA-hard to approximate problem

(Aside: NP ⊆ MA ⊆ QCMA ⊆ QMA.)
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As for QAOA

QAOA minimization (MIN-QAOA)
Input:

▶ Set H = {Hb,Hc} of local Hamiltonians
▶ Quantum circuit preparing ground state |gsb⟩ of Hb
▶ Depth thresholds d1 ≤ d2

Output:

YES: if ∃ at most d1 angles (θ1, . . . , θd1) ∈ R
d1 s.t.

|ψ⟩ := eiθ(d1)
Hb eiθ(d1−1)Hc · · · eiθ2Hb eiθ1Hc |gsb⟩ satisfies ⟨ψ|M|ψ⟩ ≤ 1/3.

NO: if ∀ sequences of at most d2 angles (θ1, . . . , θd2) ∈ R
d2 ,

|ψ⟩ := eiθ(d1)
Hb eiθ(d1−1)Hc · · · eiθ2Hb eiθ1Hc |gsb⟩ satisfies ⟨ψ|M|ψ⟩ ≥ 2/3.
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Our result for MIN-QAOA

Theorem 2
For any ϵ > 0, it is QCMA-hard to distinguish between the YES and NO cases of MIN-QAOA, even if

d2

d1
≥ N1−ϵ,

for N the encoding size of the instance.

Disclaimers:

Assume “perfect”, idealized quantum computer (i.e. no noise, perfect gates, platform-independent, etc)

Complexity results are worst-case, i.e. in practice special instances of problems might be easier to solve
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The de facto “quantum NP”

Quantum Merlin-Arthur (QMA)
Promise problem A = (Ayes,Ano) ∈ QMA if ∃ poly-time uniformly generated quantum circuit family {Qn} s.t.:

(YES case) If x ∈ Ayes, ∃ proof |ψproof⟩ ∈ (C2)⊗poly(n), such that Qn accepts with probability at least 2/3.

(NO case) If x ∈ Ano, then ∀ proofs |ψproof⟩ ∈ (C2)⊗poly(n), Qn accepts with probability at most 1/3.

|x⟩

Qn|ψproof⟩
|0⟩⊗ poly(n)

Sevag Gharibian (Paderborn University) Hardness of optimizing VQA/QAOA depth CEQIP 2023 16 / 29



Wait... there’s more than one definition “quantum NP”?
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Wait... there’s more than one definition of “quantum NP”?

Named after Snow White’s dwarves:

1 (Doc) QMA
2 (Bashful) QMA1: QMA with perfect completeness
3 (Happy) QCMA: QMA with classical proof
4 (Grumpy) QMA(2): QMA with “unentangled” proof of form |ψ1⟩ ⊗ |ψ2⟩
5 (Sneezy) NQP: Quantum TM accepts x ∈ Ayes in poly-time with probability > 0.

(Equals coC=P [Fenner, Green, Homer, Pruim, 1998].)
6 (Dopey) StoqMA: QMA with {|0⟩, |+⟩} ancillae, classical gates, measurement in X basis
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Quantum-Classical Merlin-Arthur (QCMA)
Promise problem A = (Ayes,Ano) ∈ QCMA if ∃ poly-time uniformly generated quantum circuit family {Qn} s.t.:

(YES case) If x ∈ Ayes, ∃ proof y ∈ {0, 1}poly(n), such that Qn accepts with probability at least 2/3.

(NO case) If x ∈ Ano, then ∀ proofs y ∈ {0, 1}poly(n), Qn accepts with probability at most 1/3.

|x1⟩

Qnproof y ∈ {0, 1}poly(n)

|0⟩⊗ poly(n)

Question: What good is a classical proof to a quantum verifier?
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Goal and challenges
Goal: Map given QCMA circuit V to instance (H, d , d ′) of MIN-VQA s.t. d′

d ≥ N1−ϵ, and

∃ proof y accepted by V =⇒ ≤ d VQA levels suffice to get “good” measurement result

∀ proofs y , V rejects =⇒ > d ′ VQA levels required to get “good” measurement result

Challenges:
1 Where will hardness of approximation (i.e. large ratio d ′/d) come from?
2 MIN-VQA does not restrict which Hamiltonians are applied, in which order, with which rotation angles.

How to enforce computational structure?
3 MIN-QAOA even more restricted than MIN-VQA — permits only two Hamiltonians, one of which also

acts as observable?
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Challenge 1: Hardness of approximation

Quantum Monotone Minimum Satisfying Assignment (QMSA)
Given quantum circuit V accepting non-empty monotone set S ⊆ {0, 1}n, weight thresholds g ≤ g′, output:

YES if ∃ x ∈ {0, 1}n of Hamming weight at most g accepted by V .

NO if ∀ x ∈ {0, 1}n of Hamming weight at most g′ are rejected by V .

Previously known:

∀ϵ > 0, QMSA is QCMA-hard to approximate within ratio g′/g ∈ O(N1−ϵ) [G, Kempe, 2012]

Exploits disperser-based NP-hardness of approximation framework of [Umans 1999] for Σp
2

To overcome Challenge 1:

Reduce QMSA to MIN-VQA via poly-time, many-one reduction

Maintaining N1−ϵ hardness ratio will require special attention
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Challenge 2: Enforcing computational structure

Revised Goal: Map given QMSA instance (V , g, g′) to instance (H, d , d ′) of MIN-VQA s.t. d′

d ≥ N1−ϵ, and

∃ proof y of Hamming weight ≤ g accepted by V =⇒ ≤ d VQA levels to get “good” measurement result

∀ proofs y of Hamming weight ≤ g′, V rejects =⇒ > d ′ VQA levels to get “good” measurement result

Idea
Use “hybrid Cook-Levin + Kitaev” circuit-to-Hamiltonian construction

Build set of VQA Hamiltonians H = P ∪ Q ∪ F ∪ G, such that for an honest prover:
1 (Proof) Hamiltonians from P used to prepare proof y
2 (Quantum verifier V ) Hamiltonians from Q used to simulate QMSA verifier V ’s gates
3 (2D clock) Hamiltonians from F ∪ G implement “2D clock” to track time and preserve hardness

gap d ′/d
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∀ proofs y of Hamming weight ≤ g′, V rejects =⇒ > d ′ VQA levels to get “good” measurement result

Idea
Use “hybrid Cook-Levin + Kitaev” circuit-to-Hamiltonian construction

Build set of VQA Hamiltonians H = P ∪ Q ∪ F ∪ G, such that for an honest prover:
1 (Proof) Hamiltonians from P used to prepare proof y
2 (Quantum verifier V ) Hamiltonians from Q used to simulate QMSA verifier V ’s gates
3 (2D clock) Hamiltonians from F ∪ G implement “2D clock” to track time and preserve hardness

gap d ′/d
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Challenge 2: Enforcing computational structure
VQA Hamiltonians act on four registers: A (proof), B (workspace), C (clock 1) and D (clock 2)

P P P P P P PA

C

D

G G G G G G

F F F F F F F

G

B

Q Q Q Q

M

M

F

V1 V2 V3 V4

Set of “proof” Hamiltonians, P, consists of (e.g.)

XAj ⊗ |1⟩⟨1|Cj ⊗ |1⟩⟨1|D|D|

evolve for θ=π/2
=========⇒ apply X to j th proof qubit if clocks C and D are j and |D|, resp.

Set of “quantum verifier” Hamiltonians, Q, consists of (e.g.)

(Vj)AB ⊗ |01⟩⟨10|C|A|+j,|A|+j+1 + (V †
j )AB ⊗ |10⟩⟨01|C|A|+j,|A|+j+1

evolve for θ=π/2
=========⇒

apply j th gate of verifier V , update clock C from |A|+ j to |A|+ j + 1

Observable M measures output qubit of V when clock C set to |C|
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Honest provers actions, given instance (V ,g,g′) of QMSA

1 Prepare proof y by flipping each appropriate bit of register A
▶ Takes HammingWeight(y) many Hamiltonian evolutions from set P

2 Simulate each gate of verifier V = VL · · ·V1

▶ Takes L many Hamiltonian evolutions from set Q
3 Observable M now applies energy penalty if V would reject y

Bad news: Honest prover above applies HammingWeight(y)+L evolutions, so ratio obtained scales as

g′ + L
g + L

→ 1 if L ∈ ω(g).

Fix: Use 2D clock to make flipping each bit of proof “more costly” without blowing up encoding size:

New hardness ratio:
g′ |D|+ L
g |D|+ L

≈ g′

g
for |D| ∈ ω(L), (1)
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Soundness for dishonest prover

Computation Subspace Preservation Lemma
For any sequence of angles θj ∈ R and Hamiltonians Hj ∈ P ∪ Q ∪ F ∪ G,

eiθmHm · · · eiθ2H2 eiθ1H1 |0 · · · 0⟩ABCD

is in span of states from

S :=
{

Vs−|A| · · ·V1|y⟩A|0 · · · 0⟩B|s̃⟩C |̃t⟩D | y ∈ {0, 1}|A|, s ∈ {1, . . . , |C|}, t ∈ {1, . . . , |D|}
}
. (2)

In words:

Any sequence of Hamiltonian evolutions keeps us in “logical computation space” S.

Implication: Forces prover to essentially follow honest strategy
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Challenge 3: Extending to QAOA

For QAOA:

Only 2 Hamiltonians allowed, Hb (driving Hamiltonian) and Hc (cost Hamiltonian),

start state implicitly given as unique ground state of Hb

no separate observable M.

Core idea: Alternate even/odd steps of honest prover’s actions, i.e. Hb does even steps, Hc odd steps.

Under the hood, build on MIN-VQA construction as follows:
1 Make all odd (respectively, even) local terms Hi pairwise commute.
2 Introduce 3-cyclic local terms Gj which encode multiple logical actions (instead of just 2)
3 Add constraints to Hb to ensure its unique ground state is correct start state.
4 M added as local term to Hc , but scaled larger than all other terms in Hc .
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Summary

Estimating the optimal depth of a VQA/QAOA ansatz is intractable, even with large multiplicative error

Formally, QCMA-hard within multiplicative error N1−ϵ for any ϵ > 0.

First natural hardness of approximation results for QCMA

Open questions

NP-hardness of approximation for QAOA depth for classical cost Hamiltonian?

Good heuristics for approximating depth in practice?

How hard is optimal depth approximation in noisy setting?

Hardness of approximation for other QCMA-complete problems?

“Moral” questions

Obtained hardness of approximation without quantum PCP. In “classical SAT” language:
▶ Leveraged hardness of approximation relative to Hamming weight of satisfying assignments
▶ In contrast, “classic PCP for SAT” gives hardness of approximation relative to # clauses satisfied

Quantum complexity theory — hero or villain?
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