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° Variational Quantum Algorithms (VQAs)
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Germany to invest €2B in quantum technologies
11 May 2021 | News

In one of the higgest spending plans of its kind in the world, the government commits to
develop country’s first quantum computer

By Eanna Kelly

\ V¢

German Science Minister, Anja Karliczek Photo: Anja Karliczek website

Germany is to invest €2 billion in quantum computing and related technologies over five
years, under a plan that dwarfs that of almost every other country, with the education and
research ministry committing €1.1 billion by 2025 for R&D, while the economy ministry will
contribute €878 million to develop applications.

The German Aerospace Centre will get most of the meney, some €740 million, to team up
with industry.

Announcing the plan on Tuesday, science minister Anja Karliczek, said the government aims
t0 build a competitive quantum computer in five years, while growing a network of
companies to develop applications.
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Noisy Intermediate-Scale Quantum (NISQ) computation era
Question: What can we do with near-term quantum devices with
@ small number of qubits,

@ short circuit depth,

@ limited connectivity between qubits?
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Variational Quantum Algorithms (VQA)

Idea: Hybrid classical-quantum setup
Function f(61,...,0,) € R

Classical Duantuin

C Q

Parameters 6,,...,0, € R

Goals
@ Wish to minimize some cost function f : R” — R
@ Variationally choose parameters 6; € R (via gradient descent, machine learning, etc)
@ Our focus: Keep Q as small as possible (few qubits, low depth, etc)
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Under the hood

Quantum component
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@ Given set of Hamiltonians {Hx}, choose unitaries U (0x) = M fork =1,....d
@ Roughly, a “fast-forwarded” version of standard Trotterization of Hamiltonian evolution
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Under the hood

Quantum component
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@ Given set of Hamiltonians {Hx}, choose unitaries Ux(6x) = e fork =1,...,d

@ Roughly, a “fast-forwarded” version of standard Trotterization of Hamiltonian evolution

Goal:
@ Minimize “depth” d, i.e. number of rotations applied

@ Crucial for NISQ devices: Low depth = circuit completes before noise destroys computation

Sevag Gharibian (Paderborn University) Hardness of optimizing VQA/QAOA depth CEQIP 2023 6/29



@ Introduced in 2014 by Farhi, Goldstone, Gutmann

Quantum Approximate Optimization Algorithm (QAQA)

cut

@ Tries to approximately solve hard combinatorial problems, e.g. MAX CUT

For MAX CUT, alternate application of Hy = 34505 ;) £ ® Zand Hz = 37, X;.
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Quantum Approximate Optimization Algorithm (QAQA)

@ Introduced in 2014 by Farhi, Goldstone, Gutmann
@ Tries to approximately solve hard combinatorial problems, e.g. MAX CUT

cut
!

For MAX CUT, alternate application of Hy = 34505 ;) £ ® Zand Hz = 37, X;.

Algorithm
@ “Pick” variational angles 61, . .., 0.
@ Use Qto prepare state i) = et gl%at ... g2t gittth| .. 1)

© Measure |+) in standard basis to get string x, which defines a cut in graph.
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Quantum Approximate Optimization Algorithm (QAQA)

@ Introduced in 2014 by Farhi, Goldstone, Gutmann
@ Tries to approximately solve hard combinatorial problems, e.g. MAX CUT

cut
!

For MAX CUT, alternate application of Hy = 34505 ;) £ ® Zand Hz = 37, X;.

Algorithm
@ “Pick” variational angles 61, . .., 0.
@ Use Qto prepare state i) = et gl%at ... g2t gittth| .. 1)

© Measure |+) in standard basis to get string x, which defines a cut in graph.

Question: What is the “right” depth d to use?
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(Selected) previous work

Early good news:
@ Level-1 QAOA achieves 0.6924-approximation for MAX CUT [Farhi, Goldstone, Gutmann 2014]

Sevag Gharibian (Paderborn University) Hardness of optimizing VQA/QAOA depth



(Selected) previous work

Early good news:
@ Level-1 QAOA achieves 0.6924-approximation for MAX CUT [Farhi, Goldstone, Gutmann 2014]
@ Level-1 QAOA’s output distribution cannot be efficiently simulated classically [Farhi, Harrow 2016]
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(Selected) previous work

Early good news:

@ QAOA with poly depth is universal [Lloyd 2018]

@ Level-1 QAOA achieves 0.6924-approximation for MAX CUT [Farhi, Goldstone, Gutmann 2014]
@ Level-1 QAOA’s output distribution cannot be efficiently simulated classically [Farhi, Harrow 2016]
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(Selected) previous work

Early good news:
@ Level-1 QAOA achieves 0.6924-approximation for MAX CUT [Farhi, Goldstone, Gutmann 2014]
@ Level-1 QAOA’s output distribution cannot be efficiently simulated classically [Farhi, Harrow 2016]
@ QAOA with poly depth is universal [Lloyd 2018]

Later, less good news:

@ O(1)-level QAOA cannot outperform Goemans-Williamson algorithm for MAX CUT [Bravyi, A. Kliesch,
Koenig, Tang 2020]
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(Selected) previous work
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@ O(1)-level QAOA cannot outperform Goemans-Williamson algorithm for MAX CUT [Bravyi, A. Kliesch,
Koenig, Tang 2020]

@ Many (many) heuristic studies suggest hard to optimize parameters (e.g. barren plateaus)

@ NP-hard to optimize angles 6y if Hamiltonian sequence (H, ..., Hy) and depth d prespecified [Bittel, M.
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(Selected) previous work

Early good news:
@ Level-1 QAOA achieves 0.6924-approximation for MAX CUT [Farhi, Goldstone, Gutmann 2014]
@ Level-1 QAOA’s output distribution cannot be efficiently simulated classically [Farhi, Harrow 2016]
@ QAOA with poly depth is universal [Lloyd 2018]

Later, less good news:

@ O(1)-level QAOA cannot outperform Goemans-Williamson algorithm for MAX CUT [Bravyi, A. Kliesch,
Koenig, Tang 2020]

@ Many (many) heuristic studies suggest hard to optimize parameters (e.g. barren plateaus)

@ NP-hard to optimize angles 6y if Hamiltonian sequence (H, ..., Hy) and depth d prespecified [Bittel, M.
Kliesch, 2021]

This work: How hard to estimate the optimal depth, d, for VQA/QAOA?
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Definition of VQA minimization used by [Bittel, M. Kliesch, 2021]

Recall:

@ NP-hard to optimize angles 6y if Hamiltonian sequence (H, ..., Hy) and depth d prespecified [Bittel, M.
Kliesch, 2021]

VQA minimization (MIN-VQA) [Bittel, M. Kliesch, 2021]

@ Input: Sequence (H;, ..., H.) of local Hamiltonians, observable M
@ Output: Angles (61, .. .,6.) such that |¢) := €% ... €161 |0 .. 0) minimizes (1| M]1)).
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Definition of VQA minimization used by [Bittel, M. Kliesch, 2021]

Recall:

@ NP-hard to optimize angles 6y if Hamiltonian sequence (H, ..., Hy) and depth d prespecified [Bittel, M.
Kliesch, 2021]

VQA minimization (MIN-VQA) [Bittel, M. Kliesch, 2021]
@ Input: Sequence (H, ..., H.) of local Hamiltonians, observable M
@ Output: Angles (61, .. .,6.) such that |¢) := €% ... €161 |0 .. 0) minimizes (1| M]1)).

In words:

@ Rotation axes (i.e. Hamiltonians) and their order of application fixed
@ Implicitly, this also fixes the depth L of the ansatz
@ Question: What if we relax these restrictions, and focus purely on depth minimization?
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Formalizing depth minimization

VQA minimization (MIN-VQA)
@ Input: Set H of local Hamiltonians, observable M, depth thresholds d; < d>

@ Output:
YES: if 3 at most di angles (61, ..,04) € R and Hamiltonians (G, ..., Gy, ) € H*% sit.

) = %G ... g%C0...0)  satisfies (¥|M]y) < 1/3.
NO: if V sequences of at most d» angles (61, .. .,04) € R% and (G, ..., Gy,) € H*%,

) = PG ... e%C10...0)  satisfies (¥|M|y) > 2/3.

Notes:
@ Closer to definition of ADAPT-VQE [Grimsley, Economou, Barnes, Mayhall 2019]

@ Containment in QCMA straightforward: prover sends (6;) and (G;), verifier runs Hamiltonian simulation.
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Our result for MIN-VQA

Theorem 1
For any € > 0, it is QCMA-hard to distinguish between the YES and NO cases of MIN-VQA, even if

az fl—c
= >
ady — A ’

for N the encoding size of the instance.

In words:

@ Approximating optimal depth of VQA, even up to large multiplicative factors, is intractable
@ First natural QCMA-hard to approximate problem
@ (Aside: NP C MA C QCMA C QMA))
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As for QAOA

QAOA minimization (MIN-QAQOA)

@ Input:

Set H = {Hj, Hc} of local Hamiltonians
Quantum circuit preparing ground state |gs,) of Hp
Depth thresholds di < d>

@ Output:
YES: if 3 at most di angles (61,...,04) € RY st.

|'l/}> o= ei9(d1)Hbei9(d1 _1)Hc . ei02Hbei01 Hc‘gsb>
NO: if V sequences of at most dz angles (01,...,0q4,) € R%,

o) := e %entbgler—nHe ... gf2Hs gitite|qg

satisfies (¢|M|yp) < 1/3.

satisfies (¢|M|yp) > 2/3.
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Our result for MIN-QAOA

Theorem 2

For any ¢ > 0, it is QCMA-hard to distinguish between the YES and NO cases of MIN-QAOA, even if

d2 1—e
— >
a — N5

for N the encoding size of the instance.
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Our result for MIN-QAOA

Theorem 2
For any € > 0, it is QCMA-hard to distinguish between the YES and NO cases of MIN-QAQA, even if
ab

> 1—e
a — N5

for N the encoding size of the instance.

Disclaimers:

@ Assume “perfect”, idealized quantum computer (i.e. no noise, perfect gates, platform-independent, etc)

@ Complexity results are worst-case, i.e. in practice special instances of problems might be easier to solve
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The de facto “quantum NP”
Quantum Merlin-Arthur (QMA)

Promise problem A = (Ayes, Ano) € QMA if 3 poly-time uniformly generated quantum circuit family {Qx} s.t.

@ (YES case) If x € Ay, 3 proof |¢hpor) € (C2)=Pe(n “such that Q, accepts with probability at least 2/3
@ (NO case) If x € Ay, then ¥ proofs [Upeer) € (C2) 9P Q, accepts with probability at most 1/3.

%
W}proof> ] C?n —
|0>® poly(n) __| I
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Wait... there’s more than one definition “quantum NP”?
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Wait... there’s more than one definition “quantum NP”?
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Wait... there’s more than one definition of “quantum NP”?

Named after Snow White’s dwarves:

(Doc) QMA

(Bashful) QMA,: QMA with perfect completeness

(Happy) QCMA: QMA with classical proof

(Grumpy) QMA(2): QMA with “unentangled” proof of form |¢1) ® |1)2)
(

Sneezy) NQP: Quantum TM accepts x € Ay in poly-time with probability > 0.
(Equals coC_P [Fenner, Green, Homer, Pruim, 1998].)

(Dopey) StogMA: QMA with {]0), |+)} ancillae, classical gates, measurement in X basis
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Quantum-Classical Merlin-Arthur (QCMA)

Promise problem A = (Ayes, Ano) € QCMA if 3 poly-time uniformly generated quantum circuit family {Q,} s.t.:

@ (YEScase) If x € Ay, 3 proof y € {0, 1}*°” such that Q, accepts with probability at least 2/3
@ (NO case) If x € Aw, then V proofs y € {0, 117" Q, accepts with probability at most 1/3.

[x1) —
proof y € {0, 1}P°M(")

— Q@
|0>® poly(n)

Question: What good is a classical proof to a quantum verifier?
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Recall

Quantum component @

0) —---— —
pn G v [T ) [ e )
0) R —
0, ) 0a
@ Given set of Hamiltonians {Hx}, choose unitaries U (0x) = M fork =1,....d

@ Roughly, a “fast-forwarded” version of standard Trotterization of Hamiltonian evolution
Goal:
@ Minimize “depth” d, i.e. number of rotations applied

@ Crucial for NISQ devices: Low depth = circuit completes before noise destroys computation
[m] = = =
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@ Proof sketches
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Goal and challenges
Goal: Map given QCMA circuit V to instance (H, d, d') of MIN-VQA s.t. % > N'"¢, and

Jproof y acceptedby V. — < d VQA levels suffice to get “good” measurement result
V proofs y, Vrejects = > d’ VQA levels required to get “good” measurement result
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Goal and challenges
Goal: Map given QCMA circuit V to instance (H, d, d') of MIN-VQA s.t. %’ > N'"¢, and

Jproof y acceptedby V. — < d VQA levels suffice to get “good” measurement result
V proofs y, Vrejects = > d’ VQA levels required to get “good” measurement result

Challenges:
@ Where will hardness of approximation (i.e. large ratio d’/d) come from?
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V proofs y, Vrejects = > d’ VQA levels required to get “good” measurement result

Challenges:
@ Where will hardness of approximation (i.e. large ratio d’/d) come from?

@ MIN-VQA does not restrict which Hamiltonians are applied, in which order, with which rotation angles.
How to enforce computational structure?
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Goal and challenges
Goal: Map given QCMA circuit V to instance (H, d, d') of MIN-VQA s.t. %’ > N'"¢, and

Jproof y acceptedby V. — < d VQA levels suffice to get “good” measurement result
V proofs y, Vrejects = > d’ VQA levels required to get “good” measurement result

Challenges:
@ Where will hardness of approximation (i.e. large ratio d’/d) come from?

@ MIN-VQA does not restrict which Hamiltonians are applied, in which order, with which rotation angles.
How to enforce computational structure?

© MIN-QAOA even more restricted than MIN-VQA — permits only two Hamiltonians, one of which also
acts as observable?

Sevag Gharibian (Paderborn University) Hardness of optimizing VQA/QAOA depth CEQIP 2023 22/29



Challenge 1: Hardness of approximation

Quantum Monotone Minimum Satisfying Assignment (QMSA)

Given quantum circuit V accepting non-empty monotone set S C {0, 1}", weight thresholds g < ¢’, output:
@ YESif 3 x € {0,1}" of Hamming weight at most g accepted by V.

@ NOifV x € {0,1}" of Hamming weight at most ¢ are rejected by V.

Previously known:

@ Ve > 0, QMSA is QCMA-hard to approximate within ratio g’'/g € O(N'~¢) [G, Kempe, 2012]
@ Exploits disperser-based NP-hardness of approximation framework of [Umans 1999] for ¥5
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Challenge 1: Hardness of approximation

Quantum Monotone Minimum Satisfying Assignment (QMSA)

Given quantum circuit V accepting non-empty monotone set S C {0, 1}", weight thresholds g < ¢’, output:
@ YESif 3 x € {0,1}" of Hamming weight at most g accepted by V.
@ NOifV x € {0,1}" of Hamming weight at most ¢ are rejected by V.

Previously known:

@ Ve > 0, QMSA is QCMA-hard to approximate within ratio g’'/g € O(N'~¢) [G, Kempe, 2012]
@ Exploits disperser-based NP-hardness of approximation framework of [Umans 1999] for ¥5

To overcome Challenge 1:

@ Reduce QMSA to MIN-VQA via poly-time, many-one reduction

@ Maintaining N'~< hardness ratio will require special attention
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Challenge 2: Enforcing computational structure

Revised Goal: Map given QMSA instance (V, g, g') to instance (H, d, d') of MIN-VQA s.t. %’ > N'"¢, and

3 proof y of Hamming weight < g acceptedby V= = < d VQA levels to get “good” measurement result
vV proofs y of Hamming weight < ¢, V rejects = > d’ VQA levels to get “good” measurement result
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Challenge 2: Enforcing computational structure

Revised Goal: Map given QMSA instance (V, g, g’) to instance (H, d, d’) of MIN-VQA s.t. %’ > N'"¢, and

3 proof y of Hamming weight < g acceptedby V= = < d VQA levels to get “good” measurement result
vV proofs y of Hamming weight < ¢, V rejects = > d’ VQA levels to get “good” measurement result

Idea
@ Use “hybrid Cook-Levin + Kitaev” circuit-to-Hamiltonian construction
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@ Use “hybrid Cook-Levin + Kitaev” circuit-to-Hamiltonian construction
@ Build set of VQA Hamiltonians H = P U QU F U G, such that for an honest prover:

@ (Proof) Hamiltonians from P used to prepare proof y
@ (Quantum verifier V) Hamiltonians from Q used to simulate QMSA verifier V’s gates
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Challenge 2: Enforcing computational structure

Revised Goal: Map given QMSA instance (V, g, g’) to instance (H, d, d’) of MIN-VQA s.t. %’ > N'~¢ and

3 proof y of Hamming weight < g acceptedby V= = < d VQA levels to get “good” measurement result
vV proofs y of Hamming weight < ¢, V rejects = > d’ VQA levels to get “good” measurement result

Idea
@ Use “hybrid Cook-Levin + Kitaev” circuit-to-Hamiltonian construction
@ Build set of VQA Hamiltonians H = P U QU F U G, such that for an honest prover:
@ (Proof) Hamiltonians from P used to prepare proof y
@ (Quantum verifier V) Hamiltonians from Q used to simulate QMSA verifier V’s gates

© (2D clock) Hamiltonians from F U G implement “2D clock” to track time and preserve hardness
gap d'/d
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Challenge 2: Enforcing computational structure

VQA Hamiltonians act on four registers: A (proof), B (workspace), C (clock 1) and D (clock 2)
[M]

|
Il NENENEEE

Alm|e]efe|e]w]w| |V !Vz lVa !Vf'
c [ S IR Jw
o [
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Challenge 2: Enforcing computational structure

VQA Hamiltonians act on four registers: A (proof), B (workspace), C (clock 1) and D (clock 2)

|
Il NENENEEE

Al efe]efe|efe]w| |V !Vz !Vs !\/4
o[ GG NI fw
o

@ Set of “proof” Hamiltonians, P, consists of (e.g.)

evolve for =7 /2

Xa; @ 1)1 @ [1X1 oy

apply X to jth proof qubit if clocks C and D are j and |D], resp.
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Challenge 2: Enforcing computational structure

VQA Hamiltonians act on four registers: A (proof), B (workspace), C (clock 1) and D (clock 2)

TITTIIIIIIT]
Al efe]efe|efe]w| Ve
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@ Set of “proof” Hamiltonians, P, consists of (e.g.)
Xa, @ [1)(1c; @ [1)X1]pp, Svovelforb=n/2, apply X to jth proof qubit if clocks C and D are j and |D], resp.
@ Set of “quantum verifier” Hamiltonians, Q, consists of (e.g.)

volve for O=m /2
(Vi)as @ 011000y, 141 + (VI‘T)AB ® [10X01 ey a1 .
apply jth gate of verifier V, update clock C from |A| +jto |A| +j+ 1
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Challenge 2: Enforcing computational structure

VQA Hamiltonians act on four registers: A (proof), B (workspace), C (clock 1) and D (clock 2)

TITTIIIIIIT]
Al efe]efe|efe]w| Ve
- - - AT TR
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@ Set of “proof” Hamiltonians, P, consists of (e.g.)
Xa, @ [1)(1c; @ [1)X1]pp, Svovelforb=n/2, apply X to jth proof qubit if clocks C and D are j and |D], resp.

@ Set of “quantum verifier” Hamiltonians, Q, consists of (e.g.)

volve for O=m /2
(Vi)as @ 011000y, 141 + (VI‘T)AB ® [10X01 ey a1 .
apply jth gate of verifier V, update clock C from |A| +jto |A| +j + 1

@ Observable M measures output qubit of V when clock C set to |C]|
Hardness of optimizing VQA/QAOA depth
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Honest provers actions, given instance (V, g, g’) of QMSA

@ Prepare proof y by flipping each appropriate bit of register A

» Takes HammingWeight(y) many Hamiltonian evolutions from set P
@ Simulate each gate of verifier V=V, --- V,

» Takes L many Hamiltonian evolutions from set Q

© Observable M now applies energy penalty if V would reject y

Sevag Gharibian (Paderborn University) Hardness of optimizing VQA/QAOA depth CEQIP 2023

26/29



Honest provers actions, given instance (V, g, g’) of QMSA

@ Prepare proof y by flipping each appropriate bit of register A

» Takes HammingWeight(y) many Hamiltonian evolutions from set P
@ Simulate each gate of verifier V=V, --- V,

» Takes L many Hamiltonian evolutions from set Q
© Observable M now applies energy penalty if V would reject y

Bad news: Honest prover above applies HammingWeight(y )L evolutions, so ratio obtained scales as

g+L

— 1if L € w(9).

+L
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Honest provers actions, given instance (V, g, g’) of QMSA

@ Prepare proof y by flipping each appropriate bit of register A

» Takes HammingWeight(y) many Hamiltonian evolutions from set P
@ Simulate each gate of verifier V=V, --- V,

» Takes L many Hamiltonian evolutions from set Q
© Observable M now applies energy penalty if V would reject y

Bad news: Honest prover above applies HammingWeight(y )L evolutions, so ratio obtained scales as

g+L
+L

— 1if L € w(9).

Fix: Use 2D clock to make flipping each bit of proof “more costly” without blowing up encoding size:

g/
T —~ < for |D L 1
DI~ g for 1Dl e w(t), "

New hardness ratio:
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Soundness for dishonest prover

Computation Subspace Preservation Lemma
For any sequence of angles 6; € R and Hamiltonians H; € PU QU F U G,

i0mH, i0pHp 101 H:
glfmiim . gl%2f2 51%1 1‘0"‘0>ABCD

is in span of states from

Si={Veju-+ Valy)alo---0)aSoltlo | y € {0, 1}, s € {1,....|CI}, t € {1,..., 1D} } )

In words:

@ Any sequence of Hamiltonian evolutions keeps us in “logical computation space” S.
@ Implication: Forces prover to essentially follow honest strategy
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Challenge 3: Extending to QAOA

For QAOA:
@ Only 2 Hamiltonians allowed, H, (driving Hamiltonian) and H, (cost Hamiltonian),
@ start state implicitly given as unique ground state of H,
@ no separate observable M.
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For QAOA:
@ Only 2 Hamiltonians allowed, H, (driving Hamiltonian) and H, (cost Hamiltonian),
@ start state implicitly given as unique ground state of H,
@ no separate observable M.

Core idea: Alternate even/odd steps of honest prover’s actions, i.e. H, does even steps, H. odd steps.
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Challenge 3: Extending to QAOA

For QAOA:
@ Only 2 Hamiltonians allowed, H, (driving Hamiltonian) and H, (cost Hamiltonian),
@ start state implicitly given as unique ground state of H,
@ no separate observable M.

Core idea: Alternate even/odd steps of honest prover’s actions, i.e. H, does even steps, H. odd steps.

Under the hood, build on MIN-VQA construction as follows:
@ Make all odd (respectively, even) local terms H; pairwise commute.
@ Introduce 3-cyclic local terms G; which encode muitiple logical actions (instead of just 2)
© Add constraints to H, to ensure its unique ground state is correct start state.
@ M added as local term to H, but scaled larger than all other terms in H;.
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Summary
@ Estimating the optimal depth of a VQA/QAOA ansatz is intractable, even with large multiplicative error
@ Formally, QCMA-hard within multiplicative error N'~< for any ¢ > 0.
@ First natural hardness of approximation results for QCMA
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Summary

@ Estimating the optimal depth of a VQA/QAOA ansatz is intractable, even with large multiplicative error

@ Formally, QCMA-hard within multiplicative error N'~< for any ¢ > 0.
@ First natural hardness of approximation results for QCMA

Open questions
@ NP-hardness of approximation for QAOA depth for classical cost Hamiltonian?
@ Good heuristics for approximating depth in practice?
@ How hard is optimal depth approximation in noisy setting?

@ Hardness of approximation for other QCMA-complete problems?

Sevag Gharibian (Paderborn University) Hardness of optimizing VQA/QAOA depth CEQIP 2023

29/29



Summary
@ Estimating the optimal depth of a VQA/QAOA ansatz is intractable, even with large multiplicative error
@ Formally, QCMA-hard within multiplicative error N'~< for any ¢ > 0.
@ First natural hardness of approximation results for QCMA

Open questions
@ NP-hardness of approximation for QAOA depth for classical cost Hamiltonian?
@ Good heuristics for approximating depth in practice?
@ How hard is optimal depth approximation in noisy setting?
@ Hardness of approximation for other QCMA-complete problems?

“Moral” questions
@ Obtained hardness of approximation without quantum PCP. In “classical SAT” language:

» Leveraged hardness of approximation relative to Hamming weight of satisfying assignments
» In contrast, “classic PCP for SAT” gives hardness of approximation relative to # clauses satisfied

@ Quantum complexity theory — hero or villain?
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