PAOLO PERINOTTI

INFORMATION, DISTURBANGE
AND GOMPATIBILITY

e aeen QUi

theory group

Istituto Nazionale di Fisica Nucleare

CEQIP 2023 September 5-8 — Smolenice — Slovakia



From Heisenberg to quantum information theory

Widening the playground: Operational Probabilistic Theories
Disturbance and correlations

Information extraction

(No) information without disturbance

Compatibility: strong and weak

Full compatibility

MCT: no information without disturbance + full compatibility of observation tests



HEISENBERG'S GAMMA-RAY EXPERIMENT
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Thought experiment used to justify intuitively the uncertainty principle F 29
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Statistical meaning: there is no quantum state such that most accurate predictions of x and p have

h
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The thought experiment actually introduces two different but related problems:
1) position and momentum measurements are incompatible;
2)can we measure a system without disturbing its state?



NO-INFORMATION WITHOUT DISTURBANGE: QUANTUM

= |n quantum information theory: definition by negation
= Non-disturbing measurement: state after the measurement equal to the one before

@Azi%A — @_A

= This is possible only if & =p;.#

= “No information without disturbance”



EQUIVALENT DEFINITION OF DISTURBANGE

= Equivalent notion of (no-)disturbance:

Azi%A A
A GE

= Quantum information is quantum entanglement:

“..we conclude that the deepest answer to the question is that quantum information
lies in the entanglement between systems. Quantum communication, in this view, is

fundamentally about the transfer of that entanglement from one system to another...”
B. Schumacher and M. Westmoreland, “Quantum Processes, Systems & Information”, Cambridge University Press (2010)



OPERATIONAL PROBABILISTIC THEORIES (INA NUTSHELL)

System:

G. Chiribella, G. M. D’Ariano, and PP, Phys. Rev. A 81, 062348 (2010),
G. M. D’Ariano, G. Chiribella, and PP, Quantum Theory from first principles, CUP (2017)



OPERATIONAL PROBABILISTIC THEORIES (INA NUTSHELL)

System:

finite set of

K’ outcomes
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collection of events: —A;l—

G. Chiribella, G. M. D’Ariano, and PP, Phys. Rev. A 81, 062348 (2010),
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OPERATIONAL PROBABILISTIC THEORIES (INA NUTSHELL)
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OPERATIONAL PROBABILISTIC THEORIES (INA NUTSHELL)
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G. M. D’Ariano, G. Chiribella, and PP, Quantum Theory from first principles, CUP (2017)



PROBABILISTIC STRUGTURE
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PROBABILISTIC STRUGTURE
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PROBABILISTIC STRUGTURE

Probabilistic
structure:




ATOMIG EVENTS

= Atomic event: an event that can be refined only trivially




GAUSAL THEORIES

= Strong causality: arbitrary conditioning

(18

= |mplies weak causality:
pa(pi) == Coi @) = p(pi)
J

= Uniqueness of the deterministic effect
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LOGAL DISGRIMINABILITY

= Local discriminability: it is possible to distinguish bipartite states by local observations
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LOGAL DISGRIMINABILITY

= Local discriminability = transformations < local action




LOGAL DISGRIMINABILITY

= Local discriminability = transformations < local action

= No local discriminability = it can happen that
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PURIFIGATION

= Existence of purification:

v@A, @A B

pure

= Unigueness of purification

(» Reversible




INFORMATION AND DISTURBANGE



DISTURBANGE OF GORRELATIONS

= (No-)Disturbance on correlations: the definition for general theories

- There are indeed situations where
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but
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NON-DISTURBING TESTS

= The usual definition is inadequate in the absence of local discriminability



NON-DISTURBING TESTS

= The usual definition is inadequate in the absence of local discriminability
— Definition (non-disturbing test): {A;}.ex IS non-disturbing if
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INFORMATION FROMA TEST

= (Consider a test of a theory

Input Output
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INFORMATION FROMA TEST

= (Consider a test of a theory

Input Output

- When does the test provide info on the input?

a deterministic effect

= When does the test provide info on the output?

|
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a deterministic state :




NO-INFORMATION TEST
Definition: Given the test '

we say that it does not provide information if

G. M. D’Ariano, PP, and A. Tosini, Quantum 4, 363 (2020).



NO-INFORMATION TEST
Definition: Given the test '

we say that it does not provide information if

no-information on the input
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G. M. D’Ariano, PP, and A. Tosini, Quantum 4, 363 (2020).



NO-INFORMATION TEST

Definition:

Given the test
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we say that it does not provide information if
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G. M. D’Ariano, PP, and A. Tosini, Quantum 4, 363 (2020).



NO INFORMATION WITHOUT DISTURBANGE

= We say that a theory has no information without disturbance if

1A fiex non-disturbing = {A;}icx no-information

G. M. D’Ariano, PP, and A. Tosini, Quantum 4, 363 (2020).



NO INFORMATION WITHOUT DISTURBANGE

= We say that a theory has no information without disturbance if

{A;}icx  non-disturbing =  {A;};cx no-information

= Theorem: a theory has NIWD iff the identity transformation is atomic for every system

G. M. D’Ariano, PP, and A. Tosini, Quantum 4, 363 (2020).



OTHER GONDITIONS FORN.LW.D.

= A theory has NIWD < for every system there exists a reversible atomic transformation

= Sufficient condition for NIWD: convexity + existence of purification

G. M. D’Ariano, PP, and A. Tosini, Quantum 4, 363 (2020).



INFORMATION WIThOUT DISTURBANGE

= What if the identity map is not atomic?
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INFORMATION WIThOUT DISTURBANGE

= What if the identity map is not atomic?
= Theorem: for every system the atomic decomposition of the identity is “unique”, and
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INFORMATION WIThOUT DISTURBANGE

= What if the identity map is not atomic?

= Theorem: for every system the atomic decomposition of the identity is “unique”, and

Ia :ZAi = A A; = 0y

= |nformation without disturbance: classical information
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INFORMATION WIThOUT DISTURBANGE

= What if the identity map is not atomic?

= Theorem: for every system the atomic decomposition of the identity is “unique”, and
IA = ZA@ —> A@Aj — (SZJ.AZ

= |nformation without disturbance: classical information

= Decomposition of the identity = decomposition of the sets of states and effects

St(A) = @ Sti(A)

Eff(A) = € Effi(A)

G. M. D’Ariano, PP, and A. Tosini, Quantum 4, 363 (2020).



GOMPATIBILITY OF TESTS




GOMPATIBILITY OF OBSERVATION-TESTS

= Question: what does it mean for two tests to be compatible?

= For observation tests: widely studied in the quantum literature

= POVMs {P,},cx and {Q,};cy are compatible if there exists a POVM {R; ;} i i)exxv St

- Pi=) R;;

JEY
= Qj=) Ri
1€X
= Possibility to gather information about both outcomes in a single experiment



STRONG GOMPATIBILITY OF TESTS

= Definition 1: Strong compatibility (mimicking compatible observation-tests)

= {dtiex :A—Band{%,}cy : A — C are strongly compatible if there exists
{Cg@’j}(i’j)exxy : A — BC such that
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G. M. D’Ariano, PP, and A. Tosini, J. Phys. A: Math. Theor. 55 394006 (2022)



WEAK GOMPATIBILITY OF TESTS

= Tests: not only statistics, but also evolution

G. M. D’Ariano, PP, and A. Tosini, J. Phys. A: Math. Theor. 55 394006 (2022)
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WEAK GOMPATIBILITY OF TESTS

= Tests: not only statistics, but also evolution
= E.g. state reduction in quantum theory
= {}tiex : A — Bdoes not exclude {%;}cv : A — Cif
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= Definition 2: Weak compatibility

= Two tests are weakly compatible if they do not exclude each other

G. M. D’Ariano, PP, and A. Tosini, J. Phys. A: Math. Theor. 55 394006 (2022)



WEAK GOMPATIBILITY OF TESTS

= Tests: not only statistics, but also evolution
= E.g. state reduction in quantum theory
= {}tiex : A — Bdoes not exclude {%;}cv : A — Cif
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= Definition 2: Weak compatibility
= Two tests are weakly compatible if they do not exclude each other

= Strong compatibility implies weak compatibility

G. M. D’Ariano, PP, and A. Tosini, J. Phys. A: Math. Theor. 55 394006 (2022)



QUANTUM GHANNELS

= Strong compatibility implies weak compatibility
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QUANTUM GHANNELS

= Strong compatibility implies weak compatibility

= The converse is not true: quantum channels
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G. M. D’Ariano, PP, and A. Tosini, J. Phys. A: Math. Theor. 55 394006 (2022)




QUANTUM GHANNELS

= Strong compatibility implies weak compatibility

= The converse is not true: quantum channels
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= Quantum instruments are not weakly compatible
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QUANTUM GHANNELS

= Strong compatibility implies weak compatibility

= The converse is not true: quantum channels
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= Quantum instruments are not weakly compatible

= |rreversibility by discarding ancillary systems (entails weak compatibility)

Is radically different from

irreversibility by gathering information (entails weak incompatibility)

G. M. D’Ariano, PP, and A. Tosini, J. Phys. A: Math. Theor. 55 394006 (2022)



FULL GOMPATIBILITY

= Definition: A theory has full compatibility if every two tests are weakly compatible

= |Lemma: A theory has full compatibility iff every test does not exclude the identity
= |n this case we say that the theory has full-information without disturbance
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G. M. D’Ariano, PP, and A. Tosini, J. Phys. A: Math. Theor. 55 394006 (2022)



UNGERTAINTY VS INGOMPATIBILITY



FULL INFORMATION WITHOUT DISTURBANGE AND FULL GOMPATIBILITY

= Full compatibility holds if and only if full information without disturbance does

G. M. D’Ariano, PP, and A. Tosini, J. Phys. A: Math. Theor. 55 394006 (2022)



FULL INFORMATION WITHOUT DISTURBANGE AND FULL GOMPATIBILITY

= Full compatibility holds if and only if full information without disturbance does

= Necessary condition: every system has a “classical state space”

St(A) = @ Sti(A)

G. M. D’Ariano, PP, and A. Tosini, J. Phys. A: Math. Theor. 55 394006 (2022)



FULL INFORMATION WITHOUT DISTURBANGE AND FULL GOMPATIBILITY

= Full compatibility holds if and only if full information without disturbance does

= Necessary condition: every system has a “classical state space”

= The composition rule and transformations are not necessarily classical

G. M. D’Ariano, PP, and A. Tosini, J. Phys. A: Math. Theor. 55 394006 (2022)



GOMPATIBILITY

= |s a classical state space sufficient for full compatibility?
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GOMPATIBILITY

= |s a classical state space sufficient for full compatibility?

= One might build a theory with no information without disturbance,
though without uncertainty

FIW.D. <4 Full (weak) compatibility
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M. Erba, PP, D. Rolino and A. Tosini, arXiv:2305.16931



MINIMAL GLASSIGAL THEORY

= State and effect space: classical
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MINIMAL GLASSIGAL THEORY

= State and effect space: classical

= Tests:

Permutations

Measure-prepare .
(no conditioning)

C
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Compositions thereof | » X :
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Topological closure ?

M. Erba, PP, D. Rolino and A. Tosini, arXiv:2305.16931



MINIMAL GLASSIGAL THEORY

= State and effect space: classical

= Tests:

Permutations

Measure-prepare
(no conditioning)

Compositions thereof

Topological closure ?

= Full characterisation of tests: yet unknown

M. Erba, PP, D. Rolino and A. Tosini, arXiv:2305.16931



MAIN PROPERTIES OF MCT

= |n MCT all observation tests are compatible (trivial from CT) = no uncertainty

= MCT has no-information without disturbance

M. Erba, PP, D. Rolino and A. Tosini, arXiv:2305.16931



SUMMARY

 Disturbance and correlations

« No information without disturbance = identity test is atomic
- Compatibility: strong and weak

 Different kinds of irreversibility
 Full compatibility = full information without disturbance

« Full compatibility implies classical state space

« MCT: Incompatibility does not necessarily imply uncertainty



