CONTEXTUALITY AS A PRECONDITION FOR ENTANGLEMENT

Martin Plávala
University of Siegen
In collaboration with: Otfried Gühne

Entanglement

Contextuality

Remote preparations

Main idea

1. Alice and Bob share $\rho_{A B}$
2. Bob measures $\left\{N_{b}\right\}$ and obtains outcome b.
3. Bob announces outcome b.

State of Alice's system:

$$
\sigma_{A} \approx \operatorname{Tr}_{B}\left(\left(\mathbb{1}_{A} \otimes N_{b}\right) \rho_{A B}\right)
$$

Remote preparations

Main idea

1. Alice and Bob share $\rho_{A B}$
2. Bob measures $\left\{N_{b}\right\}$ and obtains outcome b.
3. Bob announces outcome b.

State of Alice's system:

$$
\sigma_{A} \approx \operatorname{Tr}_{B}\left(\left(\mathbb{1}_{A} \otimes N_{b}\right) \rho_{A B}\right)
$$

Set of all remotely-preparable states:

$$
\Lambda_{A}\left(\rho_{A B}\right)=\left\{\sigma_{A} \in \mathcal{D}\left(\mathcal{H}_{A}\right): E_{B} \geq 0, \sigma_{A}=\operatorname{Tr}_{B}\left(\left(\mathbb{1}_{A} \otimes E_{B}\right) \rho_{A B}\right)\right\}
$$

Contextuality

K - set of preparable states: $K \subset \mathcal{D}(\mathcal{H})$

P\&M contextuality

K has preparation \& measurement noncontextual model if:

$$
\operatorname{Tr}\left(\rho M_{a}\right)=\sum_{\lambda} \operatorname{Tr}\left(\rho N_{\lambda}\right) \operatorname{Tr}\left(\omega_{\lambda} M_{a}\right)
$$

where

$$
\operatorname{Tr}\left(\rho N_{\lambda}\right) \geq 0, \quad \forall \rho \in K, \forall \lambda
$$

and $\omega_{\lambda} \in \mathcal{D}(\mathcal{H})$.

Contextuality

K - set of preparable states: $K \subset \mathcal{D}(\mathcal{H})$

P\&M contextuality

K has preparation \& measurement noncontextual model if:

$$
\operatorname{Tr}\left(\rho M_{a}\right)=\sum_{\lambda} \operatorname{Tr}\left(\rho N_{\lambda}\right) \operatorname{Tr}\left(\omega_{\lambda} M_{a}\right)
$$

where

$$
\operatorname{Tr}\left(\rho N_{\lambda}\right) \geq 0, \quad \forall \rho \in K, \forall \lambda
$$

and $\omega_{\lambda} \in \mathcal{D}(\mathcal{H})$.
$\operatorname{Tr}\left(\rho N_{\lambda}\right)$ - classical state replacing ρ
$\operatorname{Tr}\left(\omega_{\lambda} M_{a}\right)$ - classical response function replacing M_{a}

$\Lambda_{A}\left(\rho_{A B}\right)$ has P\&M noncontextual model

$$
\rho_{A B} \text { is separable }
$$

$\Lambda_{A}\left((1-\varepsilon) \rho_{A B}+\varepsilon \tau_{A B}\right)$ has P\&M noncontextual model for almost all separable $\tau_{A B}$ and $\varepsilon \in\left(0, \delta\left(\tau_{A B}\right)\right)$

$\rho_{A B}$ is separable

$\Lambda_{A}\left(\rho_{A B}\right)$ has P\&M noncontextual model

$$
\rho_{A B} \text { is separable }
$$

$$
W
$$

$\Lambda_{A}\left(\rho_{A B}\right)$ has P\&M noncontextual model

New entanglement witness

Proposition

Let $\rho_{A B}$ be a separable quantum state.
Let $E_{t, b}$ and $M_{t, b}$ be positive operators, $E_{t, b} \geq 0$ and $M_{t, b} \geq 0$, such that $E_{*}=\frac{1}{2}\left(E_{t, 0}+E_{t, 1}\right), \frac{1}{3} \sum_{t=1}^{3} M_{t, b}=\frac{\mathbb{1}_{A}}{2}$ and $\mathbb{1}_{A}=M_{t, 0}+\bar{M}_{t, 1}$ for all $t \in\{1,2,3\}$ and $b \in\{0,1\}$. Then

$$
\sum_{t=1}^{3} \sum_{b=0}^{1} \operatorname{Tr}\left[\left(M_{t, b} \otimes E_{t, b}\right) \rho_{A B}\right] \leq 5 \operatorname{Tr}\left[\left(\mathbb{1}_{A} \otimes E_{*}\right) \rho_{A B}\right]
$$

New entanglement witness

Proposition

Let $\rho_{A B}$ be a separable quantum state.
Let $E_{t, b}$ and $M_{t, b}$ be positive operators, $E_{t, b} \geq 0$ and $M_{t, b} \geq 0$, such that $E_{*}=\frac{1}{2}\left(E_{t, 0}+E_{t, 1}\right), \frac{1}{3} \sum_{t=1}^{3} M_{t, b}=\frac{\mathbb{1}_{A}}{2}$ and $\mathbb{1}_{A}=M_{t, 0}+M_{t, 1}$ for all $t \in\{1,2,3\}$ and $b \in\{0,1\}$. Then

$$
\sum_{t=1}^{3} \sum_{b=0}^{1} \operatorname{Tr}\left[\left(M_{t, b} \otimes E_{t, b}\right) \rho_{A B}\right] \leq 5 \operatorname{Tr}\left[\left(\mathbb{1}_{A} \otimes E_{*}\right) \rho_{A B}\right]
$$

For specific choice we get:

$$
\operatorname{Tr}\left(\left(\sigma_{x} \otimes \sigma_{x}\right) \rho_{A B}\right)+\operatorname{Tr}\left(\left(\sigma_{z} \otimes \sigma_{z}\right) \rho_{A B}\right) \leq \frac{4}{3}
$$

New contextuality inequality

Proposition

Let K be a set of allowed preparations. Let $\sigma_{*} \in K$ and let $i \in\{1,2\}$, let $\sigma_{i+}, \sigma_{i-}, \sigma_{i 0} \in \operatorname{cone}(K)$ be subnormalized preparations such that

$$
\sigma_{1+}+\sigma_{1-}+\sigma_{10}=\sigma_{*}=\sigma_{2+}+\sigma_{2-}+\sigma_{20}
$$

Let A_{i} be observables such that $-\mathbb{1} \leq A_{i} \leq \mathbb{1}$ for all $i \in\{1,2\}$. If there is a $\mathbf{P \& M}$ contextual model for K, then

$$
\operatorname{Tr}\left[\left(A_{1}+A_{2}\right)\left(\sigma_{1+}-\sigma_{1-}\right)\right]+\operatorname{Tr}\left[\left(A_{1}-A_{2}\right)\left(\sigma_{2+}-\sigma_{2-}\right)\right] \leq 2
$$

The speaker's attendance at this conference was sponsored by the Alexander von Humboldt Foundation.
http://www.humboldt-foundation.de

